Ir al contenido

Documat


Traveling Wave Solution with the Critical Speed for a Diffusive Epidemic System with Spatio-Temporal Delay

  • Zaili Zhen [1] ; Jingdong Wei [1] ; Jiangbo Zhou [1] ; Minjie Dong [2] ; Lixin Tian [3]
    1. [1] Jiangsu University

      Jiangsu University

      China

    2. [2] Nanjing Normal University & Nanjing Tech University
    3. [3] Jiangsu University & Nanjing Normal University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The existence of a critical traveling wave solution for a reaction-diffusion epidemic system with spatio-temporal delay is established, whose existence of super-critical traveling wave solutions is obtained in [Z. Zhen et al., Math. Method. Appl. Sci.

      41 (2018) 7074-7098]. Meanwhile, the non-existence of traveling waves with nonpositive speeds are derived. Two open problems left in the paper [Z. Zhen et al., Math.

      Method. Appl. Sci. 41 (2018) 7074-7098] are solved. Moreover, some properties of super-critical traveling waves are improved.

  • Referencias bibliográficas
    • 1. Ai, S., Albashaireh, R.: Traveling waves in spatial SIRS models. J. Dyn. Differ. Equ. 26, 143–164 (2014)
    • 2. Bai, Z., Wu, S.: Traveling waves in a delayed epidemic model with nonlinear incidence. Appl. Math. Comput. 263, 221–232 (2015)
    • 3. Bo, W., Lin, G., Xiong, B.: Minimal wave speed on a diffusive SIR model with nonlocal delays. Electron. J. Differ. Eq. 2018, 1–11 (2018)
    • 4. Chen, Y., Guo, J., Hamel, F.: Traveling waves for a lattice dynamical system arising in a diffusive endemic model. Nonlinearity 30, 2334–2359...
    • 5. Deng, D., Zhang, D.: Traveling waves for a discrete diffusive SIR epidemic model with treatment. Nonlinear Anal-Real 61, 103325 (2021)
    • 6. Ding, W., Huang, W., Kansakar, S.: Traveling wave solutions for a diffusive SIS epidemic model. Discrete Cont. Dyn.-B 18, 1291–1304 (2013)
    • 7. Ducrot, A., Langlais, M., Magal, P.: Qualitative analysis and travelling wave solutions for the SI model with vertical transmission, Commun....
    • 8. Ducrot, A., Magal, P., Ruan, S.: Travelling wave solutions in multigroup age-structure epidemic models. Arch. Ration. Mech. Anal. 195,...
    • 9. Ducrot, A., Magal, P.: Traveling wave solutions for an infection-age structured epidemic model with external supplies. Nonlinearity 23,...
    • 10. Fife, P.: Some nonclassic trends in parabolic and parabolic-like evolutions. Trends in nonlinear analysis, Springer, Berlin (2003)
    • 11. Fu, S.: Traveling waves for a diffusive SIR model with delay. J. Math. Anal. Appl. 435, 20–37 (2016)
    • 12. Fu, S., Guo, J.-S.,Wu, C.: Traveling wave solutions for a discrete diffusive epidemic model. J. Nonlinear Convex A. 17, 1739–1751 (2016)
    • 13. Guo, J., Poh, A., Shimojo, M.: The spreading speed of an SIR epidemic model with nonlocal dispersal. Asym. Anal. 120, 163–174 (2020)
    • 14. He, J., Tsai, J.: Traveling waves in the Kermack-McKendrick epidemic model with latent period. Z. Angew. Math. Phys. 70, 27 (2019)
    • 15. Hosono, Y., Ilyas, B.: Traveling waves for a simple diffusive epidemic model. Math. Mod. Meth. Appl. S. 5, 935–966 (1995)
    • 16. Lam, K.Y., Wang, X., Zhang, T.: Traveling waves for a class of diffusive disease-transmission models with network structures. SIAM J....
    • 17. Li, W., Lin, G., Ma, C., Yang, F.: Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete Con....
    • 18. Li, Y., Li, W., Lin, G.: Traveling waves of a delayed diffusive SIR epidemic model, Commun. Pur. Appl. Anal. 14, 1001–1022 (2015)
    • 19. Li, Y., Li, W., Yang, F.: Traveling waves for a nonlocal dispersal SIR model with delay and external supplies. Appl. Math. Comput. 247,...
    • 20. Li, Y., Li, W., Zhang, G.: Stability and uniqueness of traveling waves of a non-local dispersal SIR epidemic model. Dynam. Part. Differ....
    • 21. Pan, S., Li, W., Lin, G.: Travelling wave fronts in nonlocal reaction-diffusion systems and applications. Z. Angew. Math. Phys. 60, 377–392...
    • 22. Shen, W., Zhang, A.: Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats. J. Differ. Equ. 249,...
    • 23. Shu, H., Pan, X., Wang, X.: Traveling waves in epidemic models: non-monotone diffusive systems with non-monotone incidence rates. J. Dyn....
    • 24. Tian, B., Yuan, R.: Traveling waves for a diffusive SEIR epidemic model with non-local reaction and with standard incidences. Nonlinear...
    • 25. Wang, J., Li, W., Yang, F.: Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission. Commun. Nonlinear Sci....
    • 26. Wang, H., Wang, X.: Traveling waves phenomena in a Kermack-McKendric SIR model. J. Dyn. Differ. Equ. 28, 143–166 (2016)
    • 27. Wang, X., Wang, H., Wu, J.: Traveling waves of diffusive predator-prey systems: disease outbreak propagation. Discrete Cont. Dyn.-A 32,...
    • 28. Wang, Z., Wu, J.: Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission. P. Roy. Soc....
    • 29. Wei, J.: Asymptotic boundary and nonexistence of traveling waves in a discrete diffusive epidemic model. J. Differ. Equ. Appl. 26, 163–170...
    • 30. Wei, J., Zhen, Z., Zhou, J., Tian, L.: Traveling waves for a delayed epidemic model with discrete diffusion. Taiwan. J. Math. 25, 831–866...
    • 31. Wei, J., Zhou, J., Chen, W., Zhen, Z., Tian, L.: Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay, Commun....
    • 32. Wei, J., Zhou, J., Zhen, Z., Tian, L.: Super-critical and critical traveling waves in a three-component delayed disease system with mixed...
    • 33. Wei, J., Zhou, J., Zhen, Z., Tian, L.: Super-critical and critical traveling waves in a two-component lattice dynamical model with discrete...
    • 34. Wei, J., Zhou, J., Zhen, Z., Tian, L.: Time periodic traveling waves in a three-component nonautonomous and reaction-diffusion epidemic...
    • 35. Wu, C.: Existence of traveling waves with the critical speed for a discrete diffusive epidemic model. J. Differ. Equ. 262, 272–282 (2017)
    • 36. Xu, Z.: Traveling waves in a Kermack-McKendrick epidemic model with diffusion and latent period. Nonlinear Anal.-Theor. 111, 66–81 (2014)
    • 37. Xu, Z., Xu, Y., Huang, Y.: Traveling waves for a spatial SIRI epidemic model. Taiwan J. Math. 23, 1435–1460 (2019)
    • 38. Yang, F., Li, W.: Traveling waves in a nonlocal dispersal SIR model with critical wave speed. J. Math. Anal. Appl. 458, 1131–1146 (2018)
    • 39. Yang, F., Li, Y., Li, W., Wang, Z.: Traveling waves in a nonlocal dispersal Kermack–Mckendric epidemic model. Discrete Cont. Dyn.-B 18,...
    • 40. Yang, F., Li, W., Wang, J.: Wave propagation for a class of non-local dispersal non-cooperative systems. P. Royal Soc. Edinb. A 150, 1965–1997...
    • 41. Yang, F., Li, W., Wang, Z.: Traveling waves in a nonlocal dispersal SIR epidemic model. Nonlinear Anal.-Real 23, 129–147 (2015)
    • 42. Zhang, R., Liu, S.: On the asymptotic behaviour of traveling waves for a discrete diffusive epidemic model. Discret. Contin. Dyn. Syst....
    • 43. Zhang, R., Wang, J., Liu, S.: Traveling wave solutions for a class of discrete diffusive SIR epidemic model. J. Nonlinear Sci. 31, 10...
    • 44. Zhang, Q., Wu, S.: Wave propagation of a discrete SIR epidemic model with a saturated incidence rate. Int. J. Biomath. 12, 1950029 (2019)
    • 45. Zhang, T., Wang, W.: Existence of traveling wave solutions for influenza model with treatment. J. Math. Anal. Appl. 419, 469–495 (2014)
    • 46. Zhang, T., Wang, W., Wang, K.: Minimal wave speed for a class of non-cooperative diffusion-reaction system. J. Differ. Equ. 260, 2763–2791...
    • 47. Zhang, T.: Minimal wave speed for a class of non-cooperative reaction diffusion systems of three equations. J. Differ. Equ. 262, 4724–4770...
    • 48. Zhen, Z., Wei, J., Tian, L., Zhou, J., Chen, W.: Wave propagation in a diffusive SIR epidemic model with spatiotemporal delay. Math. Method....
    • 49. Zhen, Z., Wei, J., Zhou, J., Tian, L.: Wave propagation in a nonlocal diffusion epidemic model with nonlocal delayed effects. Appl. Math....
    • 50. Zhen, Z., Wei, J., Zhou, J., Tian, L.: Positive traveling waves in a diffusive epidemic system with distributed delay and constant external...
    • 51. Zhou, J., Li, J., Wei, J., Tian, L.: Wave propagation in a diffusive SAIV epidemic model with time delays. Eur. J. Appl. Math. 33, 674–700...
    • 52. Zhou, J., Song, L., Wei, J.: Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay. J. Differ....
    • 53. Zhou, J., Song, L., Wei, J., Xu, H.: Critical traveling waves in a diffusive disease model. J. Math. Anal. Appl. 476, 522–538 (2019)
    • 54. Zhou, J., Xu, J., Wei, J., Xu, H.: Existence and non-existence of traveling wave solutions for a nonlocal dispersal SIR epidemic model...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno