Ir al contenido

Documat


On the Decay of Solutions of the Linearized Equations of Conservation Equations with Viscosity and Relaxation

  • Joaquín Delgado [1] ; Patricia Saavedra [1]
    1. [1] Universidad Autónoma Metropolitana–Iztapalapa
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper we study the stability of homogeneous states in a continuous one spatial variable of conservation equations in Lagrangian coordinates, including terms of dissipation and relaxation. Local existence is proved applying Kawashima’s theorem for hyperbolic-parabolic systems [7]. We establish that when the subcharactertistic condition is satisfied, the structure of the system is not of regularity-loss type, but of the standard type, even though the linear term associated with relaxation is not symmetric nor positive semidefinite.

  • Referencias bibliográficas
    • 1. Angeles, F., Málaga, C., Plaza, R.: Strict Dissipativity of Cattaneo-Christov Systems for Compressible Fluid Flow. J. Phys. A: Math. Theor....
    • 2. Beauchard, K., Zuazua, E.: Large time asymptotics for partially dissipative hyperbolic systems. Arch. Rat. Mech. Anal. 199, 177–227 (2011)....
    • 3. Chern, I.-L.: Long-time effect of relaxation for hyperbolic conservation laws. Comm. Math. Phys. 172, 39–55 (1995)
    • 4. Chou, S., Hong, J., Lin, Y.: Existence and large time stability of traveling wave solutions to non linear balance laws in traffic flow....
    • 5. Delgado, J., Saavedra, P.: Global bifurcation diagram for the Kerner-Konhäuser traffic flow model. International Journal of Bifurcation...
    • 6. Inoue, K., Nishida, T.: On the Broadwell Model of the Boltzmann Equation for a Simple Discrete Velocity Gas. Applied Mathematics &...
    • 7. Kawashima, S.: Systems of hyperbolic-parabolic composite type with applications to the equations of magnetohydrodynamics. Doctor of Engineering...
    • 8. Kerner, B.S., Konhäuser, P.: Structure and parameters of clusters in traffic flow. Phys. Rev. E 50, 54 (1994)
    • 9. Jin, S., Liu, J.G.: Relaxation and diffusion enhanced dispersive waves. Proc. R. Soc. Lond. A 446, 555–563 (1994)
    • 10. Li, T., Liu, H.L.: Stability of a traffic flow model with nonconvex relaxation. Comm. Math. Sci. 3, 101–118 (2005). https://doi.org/10.4310/CMS.2005.v3.n2.a1
    • 11. Li, T., Liu, H.: Critical thresholds in a relaxation model for traffic flows. Indiana University Mathematics Journal 57, 3, 1409–1430...
    • 12. Liu, T., Zeng, Y.: Large time behavior of solution for general quasilinear hyperbolic-parabolic systems of conservation laws. Memoirs...
    • 13. Li, T.: Stability of traveling waves in quasi-linear hyperbolic systems with relaxation and diffusion. SIAM Jour. Math. Anal. 40(3), 1058–1075...
    • 14. Liu, T.-P.: Hyperbolic conservation laws with relaxation. Comm Math Phys. 108(1), 153–175 (1987)
    • 15. Mascia, C.: Twenty eight years with ”hyperbolic conservation laws with relaxation.” Acta Mathematica Scientia 35B(4), 807–831 (2015)....
    • 16. Mascia, C.: Stability and Instability Issues for relaxation shock profiles. In hyperbolic problems: theory, numerics, applications. Sylvie...
    • 17. Mori, N., Kawashima, S.: Decay property of the Timoshenko Cattaneo system. Analysis and Applications 14(03), 393–413 (2016). https://doi.org/10.1142/S0219530515500062
    • 18. Nishida, T.: Nonlinear hyperbolic equations and related topics in fluid dynamics. Publications Mathematiques D’Orsay 78, 02 (1978)
    • 19. Ueda, Y., Duan, R., Kawashima, S.: Decay structure for symmetric hyperbolic systems With nonsymmetric relaxation and its application....
    • 20. Umeda, T., Kawashima, S., Shizuta, Y.: On the decay of solutions to the linearized equations of the electro-magneto-fluid dynamics. Japan...
    • 21. Shizuta, Y., Kawashima, S.: Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido...
    • 22. Velasco, R.M., Saavedra, P.: Clusters in macroscopic traffic flow models. World Journal of Mechanics 2, 51–60 (2012). https://doi.org/10.4236/wjm.2012.21007
    • 23. Zeng, Y.: Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation. Arch. Rat. Mech. Anal. 150, 225–279 (1999)....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno