Ir al contenido

Documat


Filling Times for Linear Flow on the Torus with Truncated Diophantine Conditions: A Brief Review and New Proof

  • H. Scott Dumas [1] ; Stéphane Fischler [2]
    1. [1] University of New Mexico

      University of New Mexico

      Estados Unidos

    2. [2] University of Paris-Saclay

      University of Paris-Saclay

      Arrondissement de Palaiseau, Francia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We show that the geometry-of-numbers method used by A. Bounemoura to obtain filling times for linear flow on the torus satisfying Diophantine conditions may be extended to the case of linear flow with truncated Diophantine conditions, and we use these methods to recover the optimal estimate first obtained by M. Berti, L. Biasco, and P. Bolle in 2003. We also briefly review the dynamics of linear flow on the torus, previous results, optimality, and applications of these estimates.

  • Referencias bibliográficas
    • 1. Berti, M., Biasco, L., Bolle, P.: Drift in phase space: a new variational mechanism with optimal diffusion time. J. Math. Pures Appl. 82,...
    • 2. Bounemoura, A.: Ergodization time for linear flows on tori via geometry of numbers. Arch. Math. (Basel) 106(2), 129–133 (2016)
    • 3. Bounemoura, A., Fischler, S.: A Diophantine duality applied to the KAM and Nekhoroshev theorems. Math. Z. 275(3–4), 1135–1167 (2013)
    • 4. Bourgain, J., Golse, F., Wennberg, B.: On the distribution of free path lengths for the periodic Lorentz gas. Comm. Math. Phys. 190(3),...
    • 5. Broer, H.W., Huitema, G.B., Sevryuk, M.B.: Quasi-Periodic Motions in Families of Dynamical Systems. (Lecture Notes in Mathematics Vol....
    • 6. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Springer-Verlag, Berlin (1959)
    • 7. Chierchia, L., Gallavotti, G.: Drift and diffusion in phase space. Ann. Inst. H. Poincaré Phys. Théor. 60(1), 144 (1994)
    • 8. Cresson, J.: The transfer lemma for Graff tori and Arnold diffusion time. Discrete Contin. Dynam. Systems 7(4), 787–800 (2001)
    • 9. Dumas, H.S.: A mathematical theory of classical particle channeling in perfect crystals. PhD thesis, University of New Mexico, p. 131 (1988)
    • 10. Dumas, H.S.: Ergodization rates for linear flow on the torus. J. Dynam. Differential Equations 3(4), 593–610 (1991)
    • 11. Dumas, H.S.: A Nekhoroshev-like theory of classical particle channeling in perfect crystals. Dynamics Reported ( New Series) 2, 69–115...
    • 12. Dumas, H.S., Dumas, L., Golse, F.: On the mean free path for a periodic array of spherical obstacles. J. Statist. Phys. 82(5–6), 1385–1407...
    • 13. Gomes, D.A.: Perturbation theory for viscosity solutions of Hamilton-Jacobi equations and stability of Aubry-Mather sets. SIAM J. Math....
    • 14. Gruber, P.M., Lekkerkerker, C.G.: Geometry of Numbers, 2nd edn. Elsevier Science Publishers, Amsterdam (1987)
    • 15. Lochak, P., Meunier, C.: Mulitphase Averaging for Classical Systems. (Applied Math. Sciences Vol. 72). Springer-Verlag, New York (1988)
    • 16. Marco, J.-P.: Transition le long des chaînes de tores invariants pour les systèmes hamiltoniens analytiques. Ann. Inst. H. Poincaré Phys....
    • 17. Mitake, H., Soga, K.: Weak KAM theory for discounted Hamilton-Jacobi equations and its application. Calc. Var. Partial Differential Equations...
    • 18. Soga, K.: More on stochastic and variational approach to the Lax-Friedrichs scheme. Math. Comp. 85(301), 2161–2193 (2016)
    • 19. Wang, K., Yan, J.: A new kind of Lax-Oleinik type operator with parameters for time-periodic positive definite Lagrangian systems. Comm....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno