Ir al contenido

Documat


Almost Periodic Solutions in Forced Harmonic Oscillators with Infinite Frequencies

  • Shengqing Hu [1] ; Jing Zhang [2]
    1. [1] Chinese University of Hong Kong

      Chinese University of Hong Kong

      RAE de Hong Kong (China)

    2. [2] China Normal University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider a class of almost periodically forced harmonic oscillators x¨ + τ 2x = f (t, x) where τ ∈ A with A being a closed interval not containing zero, the forcing term f is real analytic almost periodic functions in t with the infinite frequency ω = (··· , ωλ, ···)λ∈Z. Using the modified Kolmogorov–Arnold–Moser (or KAM Arnold (Uspehi Mat. Nauk 18(5 (113)):13–40, 1963), Moser (Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1962:1–20 1962), Kolmogorov (Dokl. Akad. Nauk SSSR (N.S.) 98:527–530 1954)) theory about the lower dimensional tori, we show that there exists a positive Lebesgue measure set of τ contained in A such that the harmonic oscillators has almost periodic solutions with the same frequencies as f . The result extends the earlier research results with the forcing term f being quasi-periodic.

  • Referencias bibliográficas
    • 1. Arnold, V.I.: Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of...
    • 2. Braaksma, B.L.J., Broer, H.W.: On a quasiperiodic Hopf bifurcation. Ann. Inst. H. Poincaré Anal. Non Linéaire 4(2), 115–168 (1987)
    • 3. Cheng, C.Q., Sun, Y.S.: Existence of KAM tori in degenerate Hamiltonian systems. J. Differential Equations 114(1), 288–335 (1994)
    • 4. Dineen, S.: Complex analysis on infinite-dimensional spaces. Springer Monographs in Mathematics. Springer-Verlag, London Ltd, London (1999)
    • 5. Eliasson, L.H.: Perturbations of stable invariant tori for Hamiltonian systems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15(1), 115–147...
    • 6. Friedman, M.: Quasi-periodic solutions of nonlinear ordinary differential equations with small damping. Bull. Amer. Math. Soc. 73, 460–464...
    • 7. Gentile, G.: Quasi-periodic motions in strongly dissipative forced systems. Ergodic Theory Dynam. Systems 30(5), 1457–1469 (2010)
    • 8. Gentile, G.: Construction of quasi-periodic response solutions in forced strongly dissipative systems. Forum Math. 24(4), 791–808 (2012)
    • 9. Graff, S.M.: On the conservation of hyperbolic invariant tori for Hamiltonian systems. J. Differential Equations 15, 1–69 (1974)
    • 10. Hu, S.: Persistence of invariant tori for almost periodically forced reversible systems. Discrete Contin. Dyn. Syst. 40(7), 4497–4518...
    • 11. Huang, P., Li, X.: Persistence of invariant tori in integrable Hamiltonian systems under almost periodic perturbations. J. Nonlinear Sci....
    • 12. Huang, P., Li, X., Liu, B.: Almost periodic solutions for an asymmetric oscillation. J. Differential Equations 263(12), 8916–8946 (2017)
    • 13. Huang, P., Li, X., Liu, B.: Invariant curves of almost periodic twist mappings. J. Dyn. Diff. Equat. (2021). https://doi.org/10.1007/s10884-021-10033-1
    • 14. Kolmogorov, A.N.: On conservation of conditionally periodic motions for a small change in Hamilton’s function. Dokl. Akad. Nauk SSSR (N.S.)...
    • 15. Kuksin, S.B.: Nearly integrable infinite-dimensional Hamiltonian systems. Lecture Notes in Mathematics, vol. 1556. Springer-Verlag, Berlin...
    • 16. Lou, Z., Geng, J.: Quasi-periodic response solutions in forced reversible systems with Liouvillean frequencies. J. Differential Equations...
    • 17. Melnikov, V.K.: On certain cases of conservation of almost periodic motions with a small change of the Hamiltonian function. Dokl. Akad....
    • 18. Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad.Wiss. Göttingen Math.-Phys. Kl. II 1962, 1–20 (1962)
    • 19. Moser, J.: Combination tones for duffing’s equation. Comm. Pure Appl. Math. 18, 167–181 (1965)
    • 20. Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136–176 (1967)
    • 21. Piao, D., Zhang, X.: Invariant curves of almost periodic reversible mappings. Preprint, arXiv:1807.06304, (2018)
    • 22. Pöschel, J.: On elliptic lower-dimensional tori in Hamiltonian systems. Math. Z. 202(4), 559–608 (1989)
    • 23. Pöschel, J.: Small divisors with spatial structure in infinite-dimensional Hamiltonian systems. Comm. Math. Phys. 127(2), 351–393 (1990)
    • 24. Rüssmann, H.: On the one-dimensional Schrödinger equation with a quasiperiodic potential. In: Nonlinear dynamics (Internat. Conf., New...
    • 25. Siegel, C.L., Moser, J.K., Lectures on celestial mechanics. Springer-Verlag, New York-Heidelberg. Translation by Charles I. Kalme, Die...
    • 26. Stoker, J.J.: Nonlinear vibrations in mechanical and electrical systems. Interscience Publishers, New York (1950)
    • 27. Wang, J., You, J., Zhou, Q.: Response solutions for quasi-periodically forced harmonic oscillators. Trans. Amer. Math. Soc. 369(6), 4251–4274...
    • 28. Xia, Z.: Existence of invariant tori in volume-preserving diffeomorphisms. Ergodic Theory Dynam. Systems 12(3), 621–631 (1992)
    • 29. Yi, Y.: On almost automorphic oscillations. In: Differences and differential equations, volume 42 of Fields Inst. Commun., pp. 75–99....
    • 30. You, J.: Perturbations of lower-dimensional tori for Hamiltonian systems. J. Differential Equations 152(1), 1–29 (1999)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno