Ir al contenido

Documat


Monodromic Nilpotent Singular Points with Odd Andreev Number and the Center Problem

  • Claudio Pessoa [1] ; Lucas Queiroz [1]
    1. [1] Universidade Estadual Paulista

      Universidade Estadual Paulista

      Brasil

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Given a nilpotent singular point of a planar vector field, its monodromy is associated with its Andreev number n. The parity of n determines whether the existence of an inverse integrating factor implies that the singular point is a nilpotent center. For n odd, this is not always true. We give a characterization for a family of systems having Andreev number n such that the center problem cannot be solved by the inverse integrating factor method. Moreover, we study general properties of this family, determining necessary center conditions for every n and solving the center problem in the case n = 3.

  • Referencias bibliográficas
    • 1. Algaba, A., García, C., Giné, J.: Geometric criterium in the center problem. Mediterr. J. Math. 13, 2593–2611 (2016)
    • 2. Algaba, A., García, C., Giné, J.: Nilpotent centres via inverse integrating factors. European J. Appl. Math. 27, 781–795 (2016)
    • 3. Algaba, A., García, C., Giné, J.: Analytic integrability around a nilpotent singularity. J. Differential Equations 267, 443–467 (2019)
    • 4. Algaba, A., García, C., Giné, J.: Integrability of planar nilpotent differential systems through the existence of an inverse integrating...
    • 5. Algaba, A., García, C., Giné, J.: Nondegenerate and nilpotent centers for a cubic system of differential equations. Qual. Theory Dyn. Syst....
    • 6. Algaba, A., García, C., Giné, J.: A new normal form for monodromic nilpotent singularities of planar vector fields. Mediterr. J. Math....
    • 7. Algaba, A., García, C., Giné, J., Llibre, J.: The center problem for Z2-symmetric nilpotent vector fields. J. Math. Anal. Appl. 466, 183–198...
    • 8. Álvarez, M.J., Gasull, A.: Monodromy and stability for nilpotent critical points, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15, 1253–1265...
    • 9. Álvarez, M.J., Gasull, A.: Generating limit cycles from a nilpotent critical point via normal forms. J. Math. Anal. Appl. 318, 271–287...
    • 10. Andreev, A.F.: Investigation of the behaviour of the integral curves of a system of two differential equations in the neighbourhood of...
    • 11. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Ma˘ıer, A.G.: Theory of bifurcations of dynamic systems on a plane, Halsted Press [A division...
    • 12. Berthier, M., Moussu, R.: Réversibilité et classification des centres nilpotents. Ann. Inst. Fourier (Grenoble) 44, 465–494 (1994)
    • 13. Chavarriga, J., Giacomin, H., Giné, J., Llibre, J.: Local analytic integrability for nilpotent centers. Ergodic Theory Dynam. Systems...
    • 14. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative theory of planar differential systems. Universitext, Springer-Verlag, Berlin (2006)
    • 15. García, I.A.: Formal inverse integrating factor and the nilpotent center problem. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 26, 1650015,...
    • 16. García, I.A.: Center cyclicity for some nilpotent singularities including the Z2-equivariant class. Commun. Contemp. Math. 23, 2050053,...
    • 17. García, I.A., Giacomini, H., Giné, J., Llibre, J.: Analytic nilpotent centers as limits of nondegenerate centers revisited. J. Math. Anal....
    • 18. Gasull, A., Torregrosa, J.: A new algorithm for the computation of the Lyapunov constants for some degenerated critical points. In: Proceedings...
    • 19. Liapunov, A.M.: Stability of motion, Mathematics in Science and Engineering, Vol. 30, Academic Press, New York-London, 1966. With a contribution...
    • 20. Liu, Y., Li, J.: New study on the center problem and bifurcations of limit cycles for the Lyapunov system. I. Internat. J. Bifur. Chaos...
    • 21. Liu, Y., Li, J.: On third-order nilpotent critical points: integral factor method. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 21, 1293–1309...
    • 22. Moussu, R.: Symétrie et forme normale des centres et foyers dégénérés. Ergodic Theory Dynam. Systems 2(1982), 241–251 (1983)
    • 23. Romanovski, V.G., Shafer, D.S.: The center and cyclicity problems: a computational algebra approach. Birkhäuser Boston Ltd, Boston, MA...
    • 24. Stró˙zyna, E., Zoładek, H.: The analytic and formal normal form for the nilpotent singularity. J. Differ- ˙ ential Equations 179, 479–537...
    • 25. Takens, F.: Singularities of vector fields. Inst. Hautes Études Sci. Publ. Math. 43, 47–100 (1974)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno