Ir al contenido

Documat


Reducibility for a Class of Two Dimensional Almost Periodic System with Quintic Real Polynomial

  • Wenhua Qiu [1] ; Fanhui Meng [1] ; Ting Li [1]
    1. [1] Zaozhuang University

      Zaozhuang University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper focuses on the reducibility of almost periodic system with quintic real polynomials. Using the KAM iterative method, the perturbed system can be reduced to a suitable normal form, which has the origin as the equilibrium point, and the transformation is almost periodic. Hence, one proves that the system has almost periodic solutions.

  • Referencias bibliográficas
    • 1. Afzal, M., Guo, S., Piao, D.: On the Reducibility of a Class of Linear Almost Periodic Hamiltonian Systems. Qualitative Theory of Dynamical...
    • 2. Geng, J., Wu, J.: Real Analytic Quasi-Periodic Solutions with More Diophantine Frequencies for Perturbed KdV Equations. J. Dyn. Diff. Equation...
    • 3. Her, H., You, J.: Full measure reducibility for generic one-parameter family of quasiperiodic linear systems. J. Dynam. Differential Equations...
    • 4. Jorba, A., Simó, C.: On the reducibility of linear differential equations with quasiperiodic coefficients. J. Differential Equations 98,...
    • 5. Jorba, A., Simo, C.: On quasi-periodic perturbations of elliptic equilibrium points. SIAM J. Math. Anal. 27, 1704–1737 (1996)
    • 6. Moser, J.: Convergent Series Expansion for Quasi-Periodic Motions. Math. Ann. 169, 136–176 (1967)
    • 7. Pöschel, J.: Small divisors with spatial structure in infinite-dimensional Hamiltonian systems. Comm. Math. Phys. 127, 351–393 (1990)
    • 8. Qiu, W.H., Si, J.G.: Reducibility for a Class of Almost-Periodic Differential Equations with Degenerate Equilibrium Point under Small Almost-Periodic...
    • 9. Qiu, W.H., Si, J.G.: On small perturbation of four-dimensional quasi-periodic systems with degenerate equilibrium point. Communications...
    • 10. Shi, Y., Xu, J., Xu, X.: Quasi-periodic Solutions for a Class of Higher Dimensional Beam Equation with Quasi-periodic Forcing. J. Dyn....
    • 11. Xu, J.X., You, J.G.: Reducibility of linear differential equations with almost periodic coefficients, Chinese Annals of Mathematics A,...
    • 12. Xu, J.: On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point. J. Differential...
    • 13. Xu, J.: On Quasi-periodic perturbations of hyperbalic-type degeneate equilibrium point of a class of planar system. Discrete and Continous...
    • 14. Xu, J., Jiang, S.: Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under...
    • 15. Xu, J., Zheng, Q.: On the reducibility of linear differential equations with quasiperiodic coefficients which are degenerate. Proc. Amer....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno