Ir al contenido

Documat


Oscillation and Nonoscillation for Nonlinear Delay Difference Equations by Phase Plane Analysis

  • Pati Iwaasa [2] ; Hideaki Matsunaga [1]
    1. [1] Osaka Prefecture University

      Osaka Prefecture University

      Sakai Ku, Japón

    2. [2] Nippon Telegraph and Telephone West Corporation
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This study is devoted to the investigation on the oscillation problem of nonlinear delay difference equations of the form x(n + 1) − ax(n) + f (n, x(n − k)) = 0, n = 0, 1, 2,... . Here, a is a positive number, k is a positive integer, and f (n, x) is a continuous function with respect to the second variable that satisfies suitable conditions. A pair of oscillation and nonoscillation theorems for the equation is established.

      This study also improves the lower bounded condition in an oscillation theorem and the upper bounded condition in a nonoscillation theorem for the equation when the nonlinear function f (n, x) is separable. The obtained theorems are proved by transforming the equation into a certain difference system and using a phase plane analysis.

  • Referencias bibliográficas
    • 1. Ba˘stinec, J., Berezansky, L., Diblík, J., Smarda, Z.: A final result on the oscillation of solutions of the ˘ linear discrete delayed...
    • 2. Berezansky, L., Braverman, E.: On existence of positive solutions for linear difference equations with several delays. Adv. Dyn. Syst....
    • 3. Erbe, L.H., Zhang, B.G.: Oscillation of discrete analogues of delay equations. Differ. Integral. Equ. 2(3), 300–309 (1989)
    • 4. Jiang, J.C., Li, X.P.: Oscillation criteria for first order nonlinear delay difference equations. Appl. Math. Comput. 141(2/3), 339–349...
    • 5. Jiang, J.C., Tang, X.H.: Oscillation of nonlinear delay difference equations. J. Comput. Appl. Math. 146(2), 395–404 (2002)
    • 6. Karpuz, B.: Sharp oscillation and nonoscillation tests for linear difference equations. J. Differ. Equ. Appl. 23(12), 1929–1942 (2017)
    • 7. Karpuz, B., Stavroulakis, I.P.: Oscillation and nonoscillation of difference equations with several delays. Mediterr. J. Math. 18(3), 15...
    • 8. Ladas, G., Philos, Ch.G., Sficas, Y.G.: Sharp conditions for the oscillation of delay difference equations. J. Appl. Math. Simul. 2(2),...
    • 9. Stavroulakis, I.P.: Oscillation criteria for first order delay difference equations. Mediterr. J. Math. 1(2), 231–240 (2004)
    • 10. Sugie, J., Ono, Y.: Oscillation criteria for nonlinear difference equations (Japanese). RIMS. Kokyuroku. 1309, 173–180 (2003)
    • 11. Sugie, J., Ono, Y.: Phase plane analysis in oscillation theory of nonlinear delay difference equations. J. Differ. Equ. Appl. 10(1), 99–116...
    • 12. Tang, X.H., Yu, J.S.: A further result on the oscillation of delay difference equations. Comput. Math. Appl. 38(11/12), 229–237 (1999)
    • 13. Tang, X.H., Yu, J.S.: Oscillation of nonlinear delay difference equations. J. Math. Anal. Appl. 249(2), 476–490 (2000)
    • 14. Yu, J.S., Zhang, B.G., Wang, Z.C.: Oscillation of delay difference equations. Appl. Anal. 53(1/2), 117–124 (1994)
    • 15. Zhou, Y.: Oscillation and nonoscillation for difference equations with variable delays. Appl. Math. Lett. 16(7), 1083–1088 (2003)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno