Ir al contenido

Documat


Quasi-Periodic Solutions of Derivative Beam Equation on Flat Tori

  • Yingte Sun [1]
    1. [1] Yangzhou University

      Yangzhou University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider a class of nonlinear beam equations on flat tori Td L, utt + 2u = (−)α f (ωt, x, (−)βu), 0 < α + β ≤ 1 and prove that the equation admits many quasi-periodic solutions with the non-resonant frequencies ω. The main proof is based on an abstract Nash-Moser type implicit function theorem developed in Berti and Bolle (Nonlinearity 25(9):2579–2613, 2012;

      J Eur Math Soc 15(1):229–286, 2013).

  • Referencias bibliográficas
    • 1. Bambusi, D., Grébert, B., Maspero, A., Robert, D.: Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time-dependent...
    • 2. Bambusi, D., Langella, B., Montalto, R.: Reducibility of non-resonant transport equation on Td with unbounded perturbations. Ann. Henri...
    • 3. Berti, M., Bolle, P.: Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity...
    • 4. Berti, M., Bolle, P.: Quasi-periodic solutions with Sobolev regularity of NLS onTd with a multiplicative potential. J. Eur. Math. Soc....
    • 5. Berti, M., Corsi, L., Procesi, M.: An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and...
    • 6. Berti, M., Maspero, A.: Long time dynamics of Schrödinger and wave equations on flat tori. J. Differ. Equ. 267(2), 1167–1200 (2019)
    • 7. Bhatia, R.: Matrix Analysis. Springer-Verlag, New York (1997)
    • 8. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Shrödinger equation. Ann. Math. 148, 363–439 (1998)
    • 9. Bourgain, J.: Greens function estimates for lattice Schrödinger operators and applications. Annals of Mathematics Studies vol. 158, Princeton...
    • 10. Chen, B., Gao, Y., Jiang, S., Li, Y.: Quasi-periodic solutions to nonlinear beam equations on compact Lie groups with a multiplicative...
    • 11. Corsi, L., Montalto, R.: Quasi-periodic solutions for the forced Kirchhoff equation on Td . Nonlinearity 31(11), 5075–5109 (2018)
    • 12. Craig, W., Wayne, C.E.: Newtons method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46(11), 1409–1498...
    • 13. Eliasson, H., Grébert, B., Kuksin, S.: KAM for the nonlinear beam equation. Geom. Funct. Anal. 26(6), 1588–1715 (2016)
    • 14. Eliasson, H., Kuksin, S.: KAM for the nonlinear Schrödinger equation. Ann. Math. 172(1), 371–435 (2010)
    • 15. Feola, R., Grebért, B.: Reducibility of Schrödinger equation on the Sphere. Int. Math. Res. Not. 2021(19), 15082–15120 (2021)
    • 16. Feola, R., Grebért, B., Nguyen, T.: Reducibility of Schrödinger equation on a Zoll manifold with unbounded potential. J. Math. Phys. 61(7),...
    • 17. Feola, R., Giuliani, F., Montalto, R., Procesi, M.: Reducibility of first order linear operators on tori via Mosers theorem. J. Funct....
    • 18. Ge, C., Geng, J., Lou, Z.: KAM theory for the reversible perturbations of 2D linear beam equations. Math. Z. 297, 1693–1731 (2021)
    • 19. Ge, C., Geng, J., Lou, Z.: KAM Tori for Completely Resonant Hamiltonian Derivative Beam Equations on T2. J. Dyn. Differ. Equ. 33(1), 525–547...
    • 20. Geng, J., You, J.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Commun. Math. Phys. 262(2),...
    • 21. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation....
    • 22. Grébert, B., Paturel, E.: KAM for the Klein Gordon equation on Sd . Boll. Unione Mat. Ital. 9, 237–288 (2016)
    • 23. Grébert, B., Paturel, E.: On reducibility of quantum harmonic oscillator on Rd with quasiperiodic in time potential. Ann. Fac. Sci. Toulouse...
    • 24. Mi, L., Cong, H.: Quasi-periodic solutions for d-dimensional beam equation with derivative nonlinear perturbation. J. Math. Phys. 56(7),...
    • 25. Montalto, R.: A reducibility result for a class of linear wave equations on Td . Int. Math. Res. Not. 2019(6), 1788–1862 (2019)
    • 26. Procesi, C., Procesi, M.: A KAM algorithm for the resonant non-linear Schrödinger equation. Adv. Math. 272, 399–470 (2015)
    • 27. Procesi, M., Procesi, C.: Reducible quasi-periodic solutions for the non linear Schrödinger equation. Boll. Unione Mat. Ital. 9, 189–236...
    • 28. Shi, Y., Xu, J.: Quasi-periodic solutions for two dimensional modified Boussinesq equation. J. Dyn. Differ. Equ. 33(2), 741–766 (2021)
    • 29. Shi, Y.: On the existence of Sobolev quasi-periodic solutions of multidimensional nonlinear beam equation. J. Math. Phys. 57(10), 102701...
    • 30. Yuan, X.: KAM theorem with normal frequencies of finite limit points for some shallow water equations. Comm. Pure Appl. Math. 74(6), 1193–1281...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno