Ir al contenido

Documat


Switched Server Systems Whose Parameters are Normal Numbers in Base 4

  • André do Amaral Antunes [1] ; Yann Bugeaud [2] ; Benito Pires [1]
    1. [1] Universidade de São Paulo

      Universidade de São Paulo

      Brasil

    2. [2] University of Strasbourg

      University of Strasbourg

      Arrondissement de Strasbourg-Ville, Francia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Switched server systems are mathematical models of manufacturing, traffic and queueing systems. Recently, it was proved in (Eur J Appl Math 31(4), 682–708, 2020) that there exist switched server systems with 3 buffers (tanks), a server, filling rates ρ1 = ρ2 = ρ3 = 1 3 and parameters d1, d2, d3 > 0 whose ω-limit set is a fractal set. In this article, we give an explicit large subset of parameters for which the corresponding switched server systems have no fractal ω-limit set. More precisely, the Poincaré map of each system has a finite ω-limit set. The approach we use is to study the topological dynamics of a family of piecewise λ-affine contractions that includes the Poincaré maps of the switched server systems as a particular case.

  • Referencias bibliográficas
    • 1. Bugeaud, Y.: Dynamique de certaines applications contractantes, linéaires par morceaux, sur [0, 1). C. R. Acad. Sci. Paris Sér. I Math....
    • 2. Bugeaud, Y.: Distribution Modulo one and Diophantine Approximation. Cambridge Tracts in Mathematics, vol. 193. Cambridge University Press,...
    • 3. Bugeaud, Y.: On the expansions of a real number to several integer bases. Rev. Mat. Iberoam. 28(4), 931–946 (2012)
    • 4. Bugeaud, Y., Conze, J.-P.: Calcul de la dynamique de transformations linéaires contractantes mod 1 et arbre de Farey. Acta Arith. 88(3),...
    • 5. Calderon, A., Catsigeras, E., Guiraud, P.: A spectral decomposition of the attractor of piecewisecontracting maps of the interval. Ergod....
    • 6. Catsigeras, E., Guiraud, P., Meyroneinc, A.: Complexity of injective piecewise contracting interval maps. Ergod. Theory Dyn. Syst. 40(1),...
    • 7. Catsigeras, E., Guiraud, P., Meyroneinc, A., Ugalde, E.: On the asymptotic properties of piecewise contracting maps. Dyn. Syst. 31(2),...
    • 8. Chase, C., Serrano, J., Ramadge, P.J.: Periodicity and chaos from switched flow systems: contrasting examples of discretely controlled...
    • 9. Coutinho, R., Fernandez, B., Lima, R., Meyroneinc, A.: Discrete time piecewise affine models of genetic regulatory networks. J. Math. Biol....
    • 10. Ding, E.J., Hemmer, P.C.: Exact treatment of mode locking for a piecewise linear map. J. Stat. Phys. 46(1–2), 99–110 (1987)
    • 11. Fernandes, F., Pires, B.: A switched server system semiconjugate to a minimal interval exchange. Eur. J. Appl. Math. 31(4), 682–708 (2020)
    • 12. José Pedro Gaivão and Arnaldo Nogueira: Dynamics of piecewise increasing contractions. Bull. Lond. Math. Soc. 54(2), 482–500 (2022)
    • 13. Gambaudo, J.-M., Tresser, C.: On the dynamics of quasi-contractions. Bol. Soc. Brasil. Mat. 19(1), 61–114 (1988)
    • 14. Hata, M.: Dynamics of Caianiello’s equation. J. Math. Kyoto Univer. 22(1), 155–173 (1982/83)
    • 15. Hertling, P.: Disjunctive ω-words and real numbers. J.UCS 2(7), 549–568 (1996)
    • 16. Janson, S., Öberg, A.: A piecewise contractive dynamical system and Phragmén’s election method. Bull. Soc. Math. France 147(3), 395–441...
    • 17. Keener, J.P.: Chaotic behavior in piecewise continuous difference equations. Trans. Am. Math. Soc. 261(2), 589–604 (1980)
    • 18. Laurent, M., Nogueira, A.: Rotation number of contracted rotations. J. Mod. Dyn. 12, 175–191 (2018)
    • 19. Nagumo, J., Sato, S.: On a response characteristic of a mathematical neuron model. Kybernetik 10(3), 155–164 (1972)
    • 20. Nogueira, A., Pires, B.: Dynamics of piecewise contractions of the interval. Ergod. Theory Dyn. Syst. 35(7), 2198–2215 (2015)
    • 21. Nogueira, A., Pires, B., Rosales, R.A.: Asymptotically periodic piecewise contractions of the interval. Nonlinearity 27(7), 1603–1610...
    • 22. Nogueira, A., Pires, B., Rosales, R.A.: Topological dynamics of piecewise λ-affine maps. Ergod. Theory Dyn. Syst. 38(5), 1876–1893 (2018)
    • 23. Pires, B.: Symbolic dynamics of piecewise contractions. Nonlinearity 32(12), 4871–4889 (2019)
    • 24. Staiger, L.: How large is the set of disjunctive sequences? In: Combinatorics, Computability and Logic (Constan¸ta, 2001), Springer Ser....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno