Ir al contenido

Documat


Qualitative Investigation of Nonlinear Fractional Coupled Pantograph Impulsive Differential Equations

  • Kamal Shah [4] ; Israr Ahmad ; Juan J. Nieto [1] ; Ghaus Ur Rahman [2] ; Thabet Abdeljawad [3]
    1. [1] Universidade de Santiago de Compostela

      Universidade de Santiago de Compostela

      Santiago de Compostela, España

    2. [2] University of Swat

      University of Swat

      Pakistán

    3. [3] China Medical University

      China Medical University

      Taiwán

    4. [4] Prince Sultan University & University of Malakand
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this manuscript a qualitative analysis to a nonlinear coupled system of pantograph impulsive fractional differential equations (PIFDEs) is established. By the use of Banach and Krasnoselskii’s fixed-point theorems some adequate conditions for the existence and uniqueness of solution to the considered problem are developed. The advantage of using Krasnoselskii’s fixed-point theorem is that it uses slight relax compact conditions as compared to other fixed point results. Furthermore, the manuscript is enriched by adding some results about Ulam–Hyers type stability. Finally, with the help of pertinent examples, the obtained theoretical results are justified.

  • Referencias bibliográficas
    • 1. Ercan, A., Kavvas, M.L.: Numerical evaluation of fractional vertical soil water flow equations. Water 2021(13), 511 (2021)
    • 2. Moshrefi-Torbati, M., Hammond, J.K.: Physical and geometrical interpretation of fractional operators. J. Frankl. Inst. 335(6), 1077–1086...
    • 3. Tarasov, V.E.: Geometric interpretation of fractional-order derivative. Fract. Cal. Appl. Anal. 19(5), 1200–1221 (2016)
    • 4. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. ArXiv:math/0110241 (2001)
    • 5. Tarasov, V.E.: Interpretation of fractional derivatives as reconstruction from sequence of integer derivatives. Fundamenta Informaticae...
    • 6. Hilfer, R.: Mathematical and Physical Interpretations of Fractional Derivatives and Integrals. Handbook of Fractional Calculus with Applications...
    • 7. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
    • 8. Ortigueira, M.D., Machado, J.T.: What is a fractional derivative? J. Comput. Phys. 293, 4–13 (2015)
    • 9. Dalir, M., Bashour, M.: Applications of fractional calculus. Appl. Math. Sci. 4(21), 1021–1032 (2010)
    • 10. Benchohra, M., Graef, J.R., Hamani, S.: Existence results for boundary value problems with nonlinear fractional differential equations....
    • 11. Agarwal, R.P., Belmekki, M., Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann–Liouville fractional...
    • 12. Wang, G., Liu, S., Baleanu, D., Zhang, L.: A new impulsive multi-orders fractional differential equation involving multipoint fractional...
    • 13. Balachandran, K., Kiruthika, S., Trujillo, J.: Existence of solutions of nonlinear fractional pantograph equations. Acta Mathematica Scientia...
    • 14. Yukunthorn, W., Ntouyas, S.K., Tariboon, J.: Impulsive multiorders Riemann–Liouville fractional differential equations. Discret. Dyn....
    • 15. Benchohra, M., Bouriah, S., Nieto, J.J.: Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville...
    • 16. Lakshmikanthan, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
    • 17. Chernousko, F., Akulenko, L., Sokolov, B.: Control of Oscillations. Nauka, Moskow (1980)
    • 18. Bainov, D., Dimitrova, M., Dishliev, A.: Oscillation of the bounded solutions of impulsive differentialdifference equations of second...
    • 19. Chua, L., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. CAS 35, 1273– 1290 (1988)
    • 20. Babitskii, V., Krupenin, V.: Vibration in Strongly Nonlinear Systems. Nauka, Moskow (1985)
    • 21. Andronov, A., Witt, A., Haykin, S.: Oscilation Theory. Nauka, Moskow (1981)
    • 22. Popov, E.: The Dynamics of Automatic Control Systems. Gostehizdat, Moskow (1964)
    • 23. Zavalishchin, S., Sesekin, A.: Impulsive Processes: Models and Applications. Nauka, Moskow (1991)
    • 24. Hale, J.K., Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (2013)
    • 25. Ockendon, J.R., Taylor, A.B.: The dynamics of a current collection system for an electric locomotive. Proc. R Soc. Lond. Ser. A 322, 447–468...
    • 26. Rossetti, M., Bardella, P., Montrosset, I.: Modeling passive mode-locking in quantum dot lasers: a comparison between a finite-difference...
    • 27. Hofer, P., Lion, A.: Modelling of frequency- and amplitude-dependent material properties of fillerreinforced rubber. J. Mech. Phys. Solids...
    • 28. Sedaghat, S., Ordokhani, Y., Dehghan, M.: Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials....
    • 29. Iqbal, M., Shah, K., Khan, R.A.: On using coupled fixed point theorems for mild solutions to coupled system of multi-point boundary value...
    • 30. Griebel, T.: The pantograph equation in quantum calculus. Missouri University of Science and Technology (2017)
    • 31. Hyers, D.H.: On the stability of the linear functional equations. Proc. Natl. Acad. Sci. USA 27(4), 222–224 (1941)
    • 32. Ulam, S.M.: A Collection of the Mathematical Problems. Interscience Publishers, New York (1960)
    • 33. Jung, S.M.: Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 17(10), 1135–1140 (2004)
    • 34. Zada, A., Ali, W.: Choonkil, Ulam type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari’s...
    • 35. Wang, J., Lv, L., Zhou, W.: Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron....
    • 36. Kate, T., McLeod, J.B.: The functional-differential equation y (x) = ay(λx)+by(x). Bull. Am. Math. Soc. 77(6), 891–937 (1971)
    • 37. Urs, C.: Coupled fixed point theorem and applications to periodic boundary value problem. Miskolc. Math. Notes 14(1), 323–333 (2013)
    • 38. Ray, S.S., Atangana, A., Noutchie, S.C., Kurulay, M., Bildik, N., Kilicman, A.: Fractional calculus and its applications in applied mathematics...
    • 39. Burton, T.A., Kirk, C.: A fixed point theorem of Krasnoselskii’s type. Math. Nachr. 189, 23–31 (1998)
    • 40. Bainov, D.D., Simenonv, P.S.: Impulsive Differential Equations: Periodic Solutions and Applications. Longman, Harlow (1993)
    • 41. Jackson, D.: Existence and uniqueness of solutions of a semilinear nonlocal parabolic equations. J. Math. Anal. Appl. 172, 256–265 (1993)
    • 42. Yang, L., Chen, H.: Nonlocal boundary value problem for impulsive differential equations of fractional order. Adv. Differ. Equ. Article...
    • 43. Guo, T., Wei, J.: Impulsive problems for fractional differential equations with boundary value conditions. Comput. Math. Appl. 64(10),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno