Ir al contenido

Documat


On Families QSL≥2 of Quadratic Systems with Invariant Lines of Total Multiplicity At Least 2

  • Cristina Bujac [2] ; Dana Schlomiuk [1] ; Nicolae Vulpe [2]
    1. [1] University of Montreal

      University of Montreal

      Canadá

    2. [2] Vladimir Andrunachievici Institute of Mathematics and Computer Science
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Let QSL≥i be the family of quadratic differential systems with invariant lines of total multiplicity at least i and let QSLi denote the family of quadratic systems with invariant lines of total multiplicity exactly i. For any polynomial system the line at infinity is invariant. Thus the family QS of all quadratic systems is the same as QSL≥1. Our main interest is in the family QSL≥2, the largest strict sub-family of QS of systems having invariant lines. Our first goal is to give a brief survey of what we know so far about this family. At the moment we know everything about the family QSL≥4 as well as about two important subfamilies of QSL3. Only two other subfamilies of QSL3 remain to be studied. Our second goal is to give necessary and sufficient conditions in terms of invariant polynomials for systems to belong to one of these, namely the family QSL2p of quadratic systems with two parallel lines real or complex and to give the geometrical classification of this family. Our third goal is to complete a former partial result in the literature and obtain the global result on QSL≥2 saying that the Hilbert number for this family is one. This opens the road for attempting to obtain the topological classification of QSL≥2.

  • Referencias bibliográficas
    • 1. Arnold, V.: Les métodes mathématiques de la mécanique classique. (French) Éditions Mir, Moscow (1976)
    • 2. Artés, J.C., Llibre, J., Schlomiuk, D.: The geometry of quadratic polynomial differential systems with a weak focus and an invariant straight...
    • 3. Artés, J.C., Llibre, J., Schlomiuk, D., Vulpe, N.: Geometric Configurations of Singularities of Planar Polynomial Differential Systems...
    • 4. Artés, J.C., Llibre, J., Schlomiuk, D., Vulpe, N.: Invariant conditions for phase portraits of quadratic systems with complex conjugate...
    • 5. Artés, J.C., Llibre, J., Schlomiuk, D., Vulpe, N.: Global topological configurations of singularities for the whole family of quadratic...
    • 6. Artés, J.C., Mota, M.C., Rezende, A.C.: Quadratic differential systems with a finite saddle-node and an infinite saddle-node (1,1)SN-(A)....
    • 7. Artés, J.C., Llibre, J., Schlomiuk, D., Vulpe, N.: From topological to geometric equivalence in the classification of singularities at...
    • 8. Baltag, V.A., Vulpe, N.: Total multiplicity of all finite critical points of the polynomial differential system. Differ. Equ. Dyn. Syst....
    • 9. Christopher, C., Llibre, J., Pereira, J.V.: Multiplicity of invariant algebraic curves in polynomial vector fields. (Engl. Summ.) Pacific...
    • 10. Coll, B., Llibre, J.: Limit cycles for a quadratic system with an invariant straight line and some evolution of phase portraits. Colloq....
    • 11. Coppel, W.A.: Some quadratic systems with at most one limit cycle. In: Kirchgraber, Y., Walther, H.O. (eds.) Dynamics Reported: A Series...
    • 12. Darboux, G.: Mémoire sur les équations différentielles du premier ordre et du premier degré. Bulletin de Sciences Mathématiques, 2me série...
    • 13. Dulac, H.: Détermination et integration d’une certaine classe déquations différentielle ayant pour point singulier un centre. Bull. Sci....
    • 14. Grace, J.H., Young, A.: The Algebra of Invariants. Stechert, New York (1941)
    • 15. Oliveira, R., Schlomiuk, D., Travaglini, A.M.: Geometry and integrability of quadratic systems with invariant hyperbolas. Electron. J....
    • 16. Oliveira, R., Schlomiuk, D., Travaglini, D.A.M., Valls, C.: Geometry, integrability and bifurcation diagrams of a family of quadratic...
    • 17. Olver, P.J.: Classical Invariant Theory, London Mathematical Society Student Texts, vol. 44. Cambridge University Press, Cambridge (1999)
    • 18. Poincaré, H.: Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré. I. Rend. Circ. Mat. Palermo...
    • 19. Poincaré, H.: Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré. II. Rend. Circ. Mat. Palermo...
    • 20. Schlomiuk, D., Vulpe, N.: Planar quadratic differential systems with invariant straight lines of at least five total multiplicity. Qual....
    • 21. Schlomiuk, D., Vulpe, N.: Geometry of quadratic differential systems in the neighborhood of infinity. J. Differ. Equ. 215(2), 357–400...
    • 22. Schlomiuk, D., Vulpe, N.: Planar quadratic differential systems with invariant straight lines of total multiplicity four. Nonlinear Anal....
    • 23. Schlomiuk, D., Vulpe, N.: Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five...
    • 24. Schlomiuk, D., Vulpe, N.: Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity...
    • 25. Schlomiuk, D., Vulpe, N.: The full study of planar quadratic differential systems possessing a line of singularities at infinity. J. Dyn....
    • 26. Schlomiuk, D., Vulpe, N.: Global classification of the planar Lotka–Volterra differential systems according to their configurations of...
    • 27. Schlomiuk, D., Vulpe, N.: Global topological classification of Lotka–Volterra quadratic differential systems. Electron. J. Differ. Equ....
    • 28. Sibirskii, K.S.: Introduction to the Algebraic Theory of Invariants of Differential Equations. Translated from Russian. Nonlinear Science:...
    • 29. Schlomiuk, D., Zhang, X.: Quadratic differential systems with complex conjugate invariant lines meeting at a finite point. J. Differ....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno