Ir al contenido

Documat


Nondegeneracy and Uniqueness of Periodic Solution for a Liénard Equation

  • Shaowen Yao [1] ; Wenjie Li [1] ; Zhibo Cheng [1]
    1. [1] Henan Polytechnic University

      Henan Polytechnic University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider the nondegeneracy of a Liénard equation x(t) + f (x(t))x (t) + a(t)x(t) = 0.

      Besides, by nondegenerate results and Manásevich-Mawhin continuation theorem, we prove the existence and uniqueness of periodic solution of the related Liénard equation.

  • Referencias bibliográficas
    • 1. Han, X., Cheng, Z.: Positive periodic solutions to a second-order singular differential equation with indefinite weights. Qual. Theory...
    • 2. Lu, S., Xue, R.: Periodic solutions for a singular Liénard equation with indefinite weight. Topol. Methods Nonlinear Anal. 54, 203–218...
    • 3. Lu, S., Guo, Y., Chen, L.: Periodic solutions for Liénard equation with an indefinite singularity. Nonlinear Anal. Real World Appl. 45,...
    • 4. Shao, J., Wang, J., Yu, Y., Zhou, J.: Periodic solutions for a kind of Liénard equation with a deviating argument. J. Comput. Appl. Math....
    • 5. Wang, Z.: Periodic solutions of Liénard equation with a singularity and a deviating argument. Nonlinear Anal. Real. World Appl. 16, 227–234...
    • 6. Xin, Y., Cheng, Z.: Positive periodic solution to indefinite singular Liénard equation. Positivity 23, 779–787 (2019)
    • 7. Zhang, M.: Periodic solutions of Liénard equation singular forces of repusive type. J. Math. Anal. Appl. 203, 254–269 (1996)
    • 8. Lasota, A., Opial, Z.: Sur les solutions Périodiques deséquations différentielles ordinaires. Ann. Polo. Math. 16, 69–94 (1964)
    • 9. Fonda, A., Mawhin, J.: Quadratic forms, weighted eigenfunctions and boundary value problems for non-linear second order ordinary differential...
    • 10. Meng, G., Yan, P., Lin, X., Zhang, M.: Non-degeneracy and periodic solutions of semilinear differential equations with deviation. Adv....
    • 11. Ortega, R., Zhang, M.: Optimal bounds for bifurcation values of a superlinear periodic problem. Proc. Roy. Soc. Edinburgh Sect. A 135,...
    • 12. Li, W., Zhang, M.: Non-degeneracy and uniqueness of periodic solutions for some superlinear beam equations. Appl. Math. Lett. 22, 314–319...
    • 13. Torres, P., Cheng, Z., Ren, J.: Non-degeneracy and uniquess of periodic solutions for 2n-order differential equations. Discerte Contin....
    • 14. Martinez-Amores, P., Mawhin, J., Ortega, R., Willem, M.: Generic results for the existence of nondegenerate periodic solutions of some...
    • 15. Cheng, Z.: Nondegeneracy and uniqueness of periodic solution for a neutral differential equation. Qual. Theory Dyn. Syst. 19, 92–108 (2020)
    • 16. Croce, G., Dacorogn, B.: On a generalized Wirtinger inequality. Discrete Contin. Dyn. Syst. 9, 1329– 1341 (2003)
    • 17. Manásevich, R., Mawhin, J.: Periodic solutions for nonlinear systems with p-Laplacian-like operators. J. Differ. Equ. 145, 367–393 (1998)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno