Ir al contenido

Documat


Geometric Singular Perturbation Approach to Poisson-Nernst-Planck Systems with Local Hard-Sphere Potential: Studies on Zero-Current Ionic Flows with Boundary Layers

  • Jianing Chen [1] ; Mingji Zhang [2]
    1. [1] Zhejiang Normal University

      Zhejiang Normal University

      China

    2. [2] New Mexico Institute of Mining and Technology

      New Mexico Institute of Mining and Technology

      Estados Unidos

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We examine the dynamics of zero-current ionic flows via Poisson-Nernst-Planck systems with one cation, one anion and boundary layers. To account finite ion size effects in the analysis, we include Bikerman’s local hard-sphere model. Geometric singular perturbation theory is employed in our discussion, together with the specific structures of the model problem, we obtain the existence and local uniqueness result of the problem for zero-current state. More importantly, we are able to derive explicit expressions of the approximation to individual fluxes from the solutions. This allows us to further examine the effect on the zero-current ionic flows with boundary layers from finite ion sizes and diffusion coefficients by further employing regular perturbation analysis. The detailed analysis, particularly, the characterization of the nonlinear interplay between system parameters provides deep insights and better understandings of the internal dynamics of ionic flows through membrane channels.

  • Referencias bibliográficas
    • 1. Eisenberg, B.: Ions in Fluctuating Channels: Transistors Alive. Fluct. Noise Lett. 11, 76–96 (2012)
    • 2. Eisenberg, B.: Crowded charges in ion channels. In: Rice, S.A. (ed.) Advances in chemical physics, pp. 77–223. John Wiley & Sons, Hoboken,...
    • 3. Gillespie, G.: A singular perturbation analysis of the Poisson-Nernst-Planck system: applications to ionic channels. Ph.D Thesis, Rush...
    • 4. Dworakowska, B., Dołowy, K.: Ion channels-related diseases. Acta Biochim Pol. 47, 685–703 (2000)
    • 5. Unwin, N.: The structure of ion channels in membranes of excitable cells. Neuron 3, 665–676 (1989)
    • 6. Barcilon, V., Chen, D.-P., Eisenberg, R.S., Jerome, J.W.: Qualitative properties of steady-state PoissonNernst-Planck systems: perturbation...
    • 7. Chen, D.-P., Eisenberg, R.S.: Charges, currents and potentials in ionic channels of one conformation. Biophys. J. 64, 1405–1421 (1993)
    • 8. Burger, M.: Inverse problems in ion channel modelling. Inverse Problems 27, 083001 (2011)
    • 9. Burger, M., Eisenberg, R.S., Engl, H.: Inverse problems related to ion channel selectivity. SIAM J. Appl. Math. 67, 960–989 (2007)
    • 10. Bates, P.W., Chen, J., Zhang, M.: Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: competition...
    • 11. Bates, P.W., Wen, Z., Zhang, M.: Small permanent charge effects on individual fluxes via PoissonNernst-Planck models with multiple cations....
    • 12. Chen, J., Wang, Y., Zhang, L., Zhang, M.: Mathematical analysis of Poisson- Nernst-Planck models with permanent charge and boundary layers:...
    • 13. Eisenberg, B., Liu, W.: Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J. Math. Anal. 38, 1932–1966 (2007)
    • 14. Eisenberg, B., Liu, W., Xu, H.: Reversal charge and reversal potential: case studies via classical Poisson-Nernst-Planck models. Nonlinearity...
    • 15. Ji, S., Liu, W.: Flux ratios and channel structures. J. Dyn. Differ. Equ. 31, 1141–1183 (2019)
    • 16. Ji, S., Liu, W., Zhang, M.: Effects of (small) permanent charges and channel geometry on ionic flows via classical Poisson-Nernst-Planck...
    • 17. Lin, G., Liu, W., Yi, Y., Zhang, M.: Poisson-Nernst-Planck systems for ion flow with density functional theory for local hard-sphere potential....
    • 18. Liu, W.: Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems. SIAM J. Appl. Math. 65, 754–766 (2005)
    • 19. Liu, W.: One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species. J. Differ. Equ. 246, 428–451...
    • 20. Liu, W., Xu, H.: A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow. J. Differ. Equ. 258, 1192–1228 (2015)
    • 21. Mofidi, H., Liu, W.: Reversal potential and reversal permanent charge with unequal diffusion coefficients via classical Poisson-Nernst-Planck...
    • 22. Park, J.-K., Jerome, J.W.: Qualitative properties of steady-state Poisson-Nernst-Planck systems: mathematical study. SIAM J. Appl. Math....
    • 23. Wen, Z., Bates, P.W., Zhang, M.: Effects on I-V relations from small permanent charge and channel geometry via classical Poisson-Nernst-Planck...
    • 24. Wen, Z., Zhang, L., Zhang, M.: Dynamics of classical Poisson-Nernst-Planck systems with multiple cations and boundary layers. J. Dyn....
    • 25. Zhang, L., Eisenberg, B., Liu, W.: An effect of large permanent charge: decreasing flux with increasing transmembrane potential. Eur....
    • 26. Zhang, M.: Competition between cations via Poisson-Nernst-Planck systems with nonzero but small permanent charges. Membranes 11, 236 (2021)
    • 27. Eisenberg, B.: Proteins, channels, and crowded ions. Biophys. Chem. 100, 507–517 (2003)
    • 28. Eisenberg, R.S.: From structure to function in open ionic channels. J. Memb. Biol. 171, 1–24 (1999)
    • 29. Gillespie, D., Eisenberg, R.S.: Physical descriptions of experimental selectivity measurements in ion channels. Eur. Biophys. J. 31, 454–466...
    • 30. Henderson, L.J.: The fitness of the environment: an inquiry into the biological significance of the properties of matter. Macmillan, New...
    • 31. Noskov, S.Y., Berneche, S., Roux, B.: Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl...
    • 32. Barcilon, V.: Ion flow through narrow membrane channels: part I. SIAM J. Appl. Math. 52, 1391–1404 (1992)
    • 33. Hyon, Y., Eisenberg, B., Liu, C.: A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9, 459–475...
    • 34. Hyon, Y., Fonseca, J., Eisenberg, B., Liu, C.: A new Poisson-Nernst-Planck equation (PNP-FS-IF) for charge inversion near walls. Biophys....
    • 35. Schuss, Z., Nadler, B., Eisenberg, R.S.: Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model....
    • 36. Nonner, W., Eisenberg, R.S.: Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels....
    • 37. Abaid, N., Eisenberg, R.S., Liu, W.: Asymptotic expansions of I-V relations via a Poisson-NernstPlanck system. SIAM J. Appl. Dyn. Syst....
    • 38. Barcilon, V., Chen, D.-P., Eisenberg, R.S.: Ion flow through narrow membrane channels: part II. SIAM J. Appl. Math. 52, 1405–1425 (1992)
    • 39. Bates, P.W., Jia, Y., Lin, G., Lu, H., Zhang, M.: Individual flux study via steady-state Poisson-NernstPlanck systems: effects from boundary...
    • 40. Cardenas, A.E., Coalson, R.D., Kurnikova, M.G.: Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics...
    • 41. Graf, P., Kurnikova, M.G., Coalson, R.D., Nitzan, A.: Comparison of dynamic lattice monte-carlo simulations and dielectric self energy...
    • 42. Liu, W., Wang, B.: Poisson-Nernst-Planck systems for narrow tubular-like membrane channels. J. Dyn. Diff. Equ. 22, 413–437 (2010)
    • 43. Mock, M.S.: An example of nonuniqueness of stationary solutions in device models. COMPEL 1, 165–174 (1982)
    • 44. Mofidi, H., Eisenberg, B., Liu, W.: Effects of diffusion coefficients and permanent charge on reversal potentials in ionic channels. Entropy...
    • 45. Rubinstein, I.: Electro-diffusion of ions. SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA (1990)
    • 46. Saraniti, M., Aboud, S., Eisenberg, R.S.: The simulation of ionic charge transport in biological ion channels: an introduction to numerical...
    • 47. Singer, A., Norbury, J.: A Poisson-Nernst-Planck model for biological ion channels-an asymptotic analysis in a three-dimensional narrow...
    • 48. Singer, A., Gillespie, D., Norbury, J., Eisenberg, R.S.: Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system:...
    • 49. Wang, X.-S., He, D., Wylie, J., Huang, H.: Singular perturbation solutions of steady-state PoissonNernst-Planck systems. Phys. Rev. E...
    • 50. Zhang, M.: Asymptotic expansions and numerical simulations of I–V relations via a steady-state Poisson-Nernst-Planck system. Rocky MT....
    • 51. Zhang, M.: Boundary layer effects on ionic flows via classical Poisson-Nernst-Planck systems. Comput. Math. Biophys. 6, 14–27 (2018)
    • 52. Zheng, Q., Wei, G.W.: Poisson-Boltzmann-Nernst-Planck model. J. Chem. Phys. 134, 1–17 (2011)
    • 53. Zhang, L., Liu, W.: Effects of large permanent charges on ionic flows via Poisson-Nernst-Planck models. SIAM J. Appl. Dyn. Syst. 19, 1993–2029...
    • 54. Rosenfeld, Y.: Free-energy model for the inhomogeneous hard-sphere fluid mixture and densityfunctional theory of freezing. Phys. Rev....
    • 55. Rosenfeld, Y.: Free energy model for the inhomogeneous fluid mixtures: Yukawa-charged hard spheres, general interactions, and plasmas....
    • 56. Aitbayev, R., Bates, P.W., Lu, H., Zhang, L., Zhang, M.: Mathematical studies of Poisson-NernstPlanck systems: dynamics of ionic flows...
    • 57. Bates, P.W., Liu, W., Lu, H., Zhang, M.: Ion size and valence effects on ionic flows via Poisson-NernstPlanck systems. Commun. Math. Sci....
    • 58. Eisenberg, B., Hyon, Y., Liu, C.: Energy variational analysis of ions in water and channels: field theory for primitive models of complex...
    • 59. Gillespie, D., Xu, L., Wang, Y., Meissner, G.: (De)constructing the ryanodine receptor: modeling ion permeation and selectivity of the...
    • 60. Gillespie, D., Nonner, W., Eisenberg, R.S.: Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux. J. Phys....
    • 61. Gillespie, D., Nonner, W., Eisenberg, R.S.: Crowded charge in biological ion channels. Nanotech. 3, 435–438 (2003)
    • 62. Hyon, Y., Fonseca, J., Eisenberg, B., Liu, C.: Energy variational approach to study charge inversion (layering) near charged walls. Discrete...
    • 63. Hyon, Y., Liu, C., Eisenberg, B.: PNP equations with steric effects: a model of ion flow through channels. J. Phys. Chem. B 116, 11422–11441...
    • 64. Ji, S., Liu, W.: Poisson-Nernst-Planck systems for ion flow with density functional theory for hardsphere potential: I–V relations and...
    • 65. Jia, Y., Liu, W., Zhang, M.: Qualitative properties of ionic flows via Poisson-Nernst-Planck systems with Bikerman’s local hard-sphere...
    • 66. Kilic, M.S., Bazant, M.Z., Ajdari, A.: Steric effects in the dynamics of electrolytes at large applied voltages II. Modified Poisson-Nernst-Planck...
    • 67. Lu, H., Li, J., Shackelford, J., Vorenberg, J., Zhang, M.: Ion size effects on individual fluxes via PoissonNernst-Planck systems with...
    • 68. Liu, W., Tu, X., Zhang, M.: Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I–V relations...
    • 69. Sun, L., Liu, W.: Non-localness of excess potentials and boundary value problems of Poisson-NernstPlanck systems for ionic flow: a case...
    • 70. Zhou, Z., Wang, Z., Li, B.: Mean-field description of ionic size effects with nonuniform ionic sizes: a numerical approach. Phy. Rev....
    • 71. Bikerman, J.J.: Structure and capacity of the electrical double layer. Philos. Mag. 33, 384 (1942)
    • 72. Liu, J., Eisenberg, B.: Molecular mean-field theory of ionic solutions: a Poisson-Nernst-PlanckBikerman model. Entropy 22, 550 (2020)
    • 73. Vera, J. H., Wilezek-Vera, G.: Classical thermodynamics of fluid systems: principles and applications, CRC Press, New York, NY, USA (2016)
    • 74. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equ. 31, 53–98 (1979)
    • 75. Jones, C.: Geometric singular perturbation theory. Dynamical systems (Montecatini Terme, 1994). Lect. Notes in Math., vol. 1609, pp. 44-118....
    • 76. Jones, C., Kopell, N.: Tracking invariant manifolds with differential forms in singularly perturbed systems. J. Diff. Equ. 108, 64–88...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno