Ir al contenido

Documat


Reflected Forward-Backward Stochastic Differential Equations Driven by G-Brownian Motion with Continuous Monotone Coefficients

  • Bingjun Wang [1] ; Hongjun Gao [2] ; Mei Li [3] ; Mingxia Yuan [4]
    1. [1] Nanjing Normal University

      Nanjing Normal University

      China

    2. [2] Southeast University

      Southeast University

      China

    3. [3] Nanjing University of Finance and Economics

      Nanjing University of Finance and Economics

      China

    4. [4] Nanjing Vocational Institute of Transport Technology
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper is devoted to investigating the existence of solution to a class of reflected forward-backward stochastic differential equations driven by G-Brownian motion (G-RFBSDEs). We construct a solution to the equations by monotone convergence argument when the generator of backward equation and the drift of forward equation satisfy the monotonicity and uniformly continuous condition.

  • Referencias bibliográficas
    • 1. Antonelli, F., Hanmadène, S.: Existence of solutions of backward-forward SDEs with continuous monotone coefficients. Statist. Probab. Lett....
    • 2. Bai, X., Lin, Y.: On the existence and uniqueness of solutions to stochastic differential equations driven by G-Brownian motion with integral-Lipschitz...
    • 3. Denis, L., Hu, M., Peng, S.: Function spaces and capacity related to a sublinear expectation: application to G-Brownain motion paths. Potential...
    • 4. Gao, F.Q.: Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion. Stochastic Process....
    • 5. Hu, Y.: N-person differntial games governed by semilinear stochastic evolution systems. Appl. Math. Optim. 24, 257–271 (1991)
    • 6. Hu, M., Ji, S., Peng, S.: On representation theorem of G-expectationa and paths of G-Brownian motion. Acta. Math. Appl. Sin. Engl. Ser....
    • 7. Hu, M., Ji, S., Peng, S., Song, Y.: Backward stochastic differential equation driven by G-Brownian motion. Stoch. Process. Appl. 124, 759–784...
    • 8. Hu, M., Wang, F., Zheng, G.: Quasi-continuous random variables and processes under the Gexpectation framework. Stoch. Process. Appl. 126,...
    • 9. Huang, Z., Lepeltier, J., Wu, Z.: Reflected forward-backward differential equations with continuous monotone coefficients. Statist. Probab....
    • 10. Luo, P., Wang, F.: Stochastic differential equations driven by G-Brownian motion and ordinary differential equations. Stoch. Process....
    • 11. Lin, Y.: Stochastic differential equations driven by G-Brownian motion with reflecting boundary conditions. Electron. J. Probab. 18, 1–23...
    • 12. Li, X., Peng, S.: Stopping times and related Itô’s calculus with G-Brownian motion. Stoch. Process. Appl. 121, 1492–1508 (2011)
    • 13. Li, H., Peng, S., Soumana, H.A.: Reflected solutions of BSDEs driven by G-Brownian motion. Sci. China Math. 61, 1–26 (2018)
    • 14. Li, H., Song, Y.: Backward stochastic differential equations driven by G-Brownian motion with double reflections. J. Theoret. Probab....
    • 15. Lepeltier, J., San Martin, J.: Backward stochastic differential equations with continuous coefficients. Statist. Probab. Lett. 34, 425–430...
    • 16. Peng, S.: Nonlinear expectations and nonlinear Markov chains, Chinese. Ann. Math. 26B, 159–184 (2005)
    • 17. Peng, S.: Nonlinear expectations and stochastic calculus under uncertainly. With robust CLT and GBrownian motion. Probability Theory and...
    • 18. Peng, S.: G-expectation, G-Brownian motion and related stochastic calculus of Itô type, In: Stochastic Analysis and Applications. Abel...
    • 19. Peng, S., Song, Y., Zhang, J.: A complete representation theorem for G-martingales. Stochastics 86, 609–631 (2014)
    • 20. Possamai, D.: Second order backward stochastic differential equations under monotonicity condition. Stoch. Process. Appl. 123, 1521–1545...
    • 21. Ren, Y., Bi, Q., Sakthivel, R.: Stochastic functional differential equation with infinite delay driven by G-Brownian motion. Math. Meth....
    • 22. Soner, M., Touzi, N., Zhang, J.: Martingale representation theorem for the G-expectation. Stoch. Process. Appl. 121, 265–287 (2011)
    • 23. Song, Y.: Some properties on G-evaluation and its applications to G-martingale decomposition. Sci. China Math. 54, 287–300 (2011)
    • 24. Song, Y.: Backward stochastic differential equations driven by G-Brownian motion under a monotonicity condition, Chinese. Ann. Math. 40A,...
    • 25. Wang, F., Zheng, G.: Backward stochastic differential equations driven by G-Brownian motion with uniformly continuous generators. J. Theoret....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno