Ir al contenido

Documat


Notes on Multiple Periodic Solutions for Second Order Hamiltonian Systems

  • Yiwei Ye [1] ; Shan Liu [1]
    1. [1] Chongqing Normal University

      Chongqing Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we study the multiplicity of periodic solutions for the second order Hamiltonian systems u¨ + ∇F(t, u) = 0 with the boundary condition u(0) − u(T ) = u˙(0) − ˙u(T ) = 0, where the potential F is either subquadratic k(t)-concave or subquadratic μ(t)-convex. Based on the reduction method and a three-critical-point theorem due to Brezis and Nirenberg, we obtain the multiplicity results, which complement and sharply improve some related results in the literature.

  • Referencias bibliográficas
    • 1. Amann, H.: Saddle points and multiple solutions of differential equations. Math. Z. 169, 127–166 (1979)
    • 2. Bates, P.W., Ekeland, I.: A saddle-point theorem. In: Differential Equations. Proc. Eighth Fall Conf., Oklahoma State Univ., Stillwater,...
    • 3. Brezis, H., Nirenberg, L.: Remarks on finding critical points. Comm. Pure Appl. Math. 44, 939–963 (1991)
    • 4. Castro, A., Lazer, A.C.: Applications of a max-min principle. Rev. Colombiana Mat. 10, 141–149 (1976)
    • 5. Chen, G., Zhan, G.: Infinitely many small negative energy periodic solutions for second order Hamiltonian systems without spectrum 0. Houston...
    • 6. Fei, G.: On periodic solutions of superquadratic Hamiltonian systems. Electron. J. Differ. Equ. 8, 12 (2002)
    • 7. Izydorek, M., Janczewska, J., Waterstraat, N.: The equivariant spectral flow and bifurcation of periodic solutions of Hamiltonian systems....
    • 8. Lazer, A.C., Landesman, E.M., Meyers, D.R.: On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence....
    • 9. Liu, Y., Guo, F.: Multiplicity of periodic solutions for a class of second-order perturbed Hamiltonian systems. J. Math. Anal. Appl. 491(14),...
    • 10. Liu, G.: Periodic solutions of second order Hamiltonian systems with nonlinearity of general linear growth. Electron. J. Qual. Theory...
    • 11. Long, Y.M.: Nonlinear oscillations for classical Hamiltonian systems with bi-even subquadratic potentials. Nonlinear Anal. 24, 1665–1671...
    • 12. Manasevich, R.F.: A min max theorem. J. Math. Anal. Appl. 90, 64–71 (1982)
    • 13. Manasevich, R.F.: A nonvariational version of a max-min principle. Nonlinear Anal. 7, 565–570 (1983)
    • 14. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Appl. Math. Sci., vol. 74. Springer-Verlag, New York (1989)
    • 15. Shen, T., Liu, W.: Infinitely many rotating periodic solutions for suplinear second-order impulsive Hamiltonian systems. Appl. Math. Lett....
    • 16. Strzelecki, D.: Periodic solutions of symmetric Hamiltonian systems. Arch. Ration. Mech. Anal. 237, 921–950 (2020)
    • 17. Tang, C.-L.: Existence and multiplicity of periodic solutions for nonautonomous second order systems. Nonlinear Anal. 32, 299–304 (1998)
    • 18. Tang, C.-L.: Periodic solutions for nonautonomous second order systems with sublinear nonlinearity. Proc. Amer. Math. Soc. 126, 3263–3270...
    • 19. Tang, C.-L., Wu, X.-P.: Some critical point theorems and their applications to periodic solution for second order Hamiltonian systems....
    • 20. Tang, X.H., Jiang, J.: Existence and multiplicity of periodic solutions for a class of second-order Hamiltonian systems. Comput. Math....
    • 21. Thews, K.: A reduction method for some nonlinear Dirichlet problems. Nonliear Anal. 3, 795–813 (1979)
    • 22. Wang, Z., Zhang, J.: New existence results on periodic solutions of non-autonomous second order Hamiltonian systems. Appl. Math. Lett....
    • 23. Wang, Z., Zhang, J., Chen, M.: A unified approach to periodic solutions for a class of non-autonomous second order Hamiltonian systems....
    • 24. Wu, X.: Saddle point characterization and multiplicity of periodic solutions of non-autonomous secondorder systems. Nonlinear Anal. 58,...
    • 25. Yosida, K.: Functional Analysis, 6th edn. Springer-Verlag, Berlin (1980)
    • 26. Zhang, Q., Liu, C.: Infinitely many periodic solutions for second order Hamiltonian systems. J. Differ. Equ. 251, 816–833 (2011)
    • 27. Zhao, F., Wu, X.: Existence and multiplicity of nonzero periodic solution with saddle point character for some nonautonomous second order...
    • 28. Zhao, F., Wu, X.: Existence and multiplicity of periodic solution for non-autonomous second-order systems with linear nonlinearity. Nonlinear...
    • 29. Zou, W., Li, S.: Infinitely many solutions for Hamiltonian systems. J. Differ. Equ. 186, 141–164 (2002)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno