Ir al contenido

Documat


Bifurcation of Limit Cycles of a Piecewise Smooth Hamiltonian System

  • Jihua Yang [1] ; Liqin Zhao [2]
    1. [1] Ningxia Normal University

      Ningxia Normal University

      China

    2. [2] Beijing Normal University

      Beijing Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 4, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In order to get the lower bound of the number of limit cycles for near-Hamiltonian systems, one often faces the difficulty in verifying the independence of the coefficients of some polynomials. The difficulty is mainly coming from the tedious iterative computation. In the present paper, we provide an approach to verify the independence which largely reduces calculation and illustrate this method by perturbing a piecewise smooth Hamiltonian system with a homoclinic loop. Using this method, we prove that the maximal number of limit cycles of this system is n+[n+12], and this bound can be reached.

  • Referencias bibliográficas
    • 1. Bernardo, M., Budd, C., Champneys, A., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems, Theory and Applications. Springer-Verlag, London...
    • 2. Chen, Y., Yu, J.: The study on cyclicity of a class of cubic systems. Discrete Contin. Dyn. Syst.-B 27(11), 6233–6256 (2022)
    • 3. Coll, B., Gasull, A., Prohens, R.: Bifurcation of limit cycles from two families of ceters. Dyn. Contin. Discrete Implus Syst. Ser. A Math....
    • 4. Gong, S., Han, M.: An estimate of the number of limit cycles bifurcating from a planar integrable system. Bull. Sci. Math. 176, 103118...
    • 5. Grau, M., Mañosas, F., Villadelprat, J.: A Chebyshev criterion for Abelian integrals. Trans. Amer. Math. Soc. 363, 109–129 (2011)
    • 6. Han, M., Sheng, L.: Bifurcation of limit cycles in piecewise smooth systems via Melnikov function. J. Appl. Anal. Comput. 5, 809–815 (2015)
    • 7. Horozov, E., Iliev, I.: Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians. Nonlinearity 11, 1521–1537...
    • 8. Kunze, V.: Non-Smooth Dynamical Systems. Springer-Verlag, Berlin (2000)
    • 9. Li, W., Zhao, Y., Li, C., Zhang, Z.: Abelian integrals for quadratic centers having almost all their orbits formed by quartics. Nonlinearity...
    • 10. Liang, F., Han, M., Romanovski, V.: Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic...
    • 11. Liang, F., Han, M.: On the number of limit cycles in small perturbations of a piecewise linear Hamiltonian system with a heteroclinic...
    • 12. Llibre, J., Mereu, A., Novaes, D.: Averaging theory for discontinuous piecewise differential systems. J. Differ. Equ. 258, 4007–4032 (2015)
    • 13. Llibre, J., Novaes, D., Teixeira, M.: On the birth of limit cycles for non-smooth dynamical systems. Bull. Sci. Math. 139, 229–244 (2015)
    • 14. Liu, X., Han, M.: Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems. Int. J. Bifur. Chaos 20, 1379–1390 (2010)
    • 15. Shi, H., Bai, Y., Han, M.: On the maximum number of limit cycles for a piecewise smooth differential system. Bull. Sci. Math. 163, 102887...
    • 16. Sui, S., Yang, J., Zhao, L.: On the number of limit cycles for generic Lotka-Volterra system and Bogdanov-Takens system under perturbations...
    • 17. Teixeira, M. Perturbation theory for non-smooth systems. In: Encyclopedia of complexity and systems science, Springer, New York, (2009)
    • 18. Xiong, Y., Han, M.: Limit cycles appearing from a generalized heteroclinic loop with a cusp and a nilpotent saddle. J. Differ. Equ. 303,...
    • 19. Xiong, Y., Han, M.: Limit cycle bifurcations by perturbing a class of planar quintic vector fields. J. Differ. Equ. 269, 10964–10994 (2020)
    • 20. Xiong, Y., Hu, J.: A class of reversible quadratic systems with piecewise polynomial perturbations. Appl. Math. Comput. 362, 124527 (2019)
    • 21. Yang, J., Zhao, L.: Bounding the number of limit cycles of discontinuous differential systems by using Picard-Fuchs equations. J. Differ....
    • 22. Yang, J., Zhao, L.: The cyclicity of period annuli for a class of cubic Hamiltonian systems with nilpotent singular points. J. Differ....
    • 23. Yang, J.: Bifurcation of limit cycles of the nongeneric quadratic reversible system with discontinuous perturbations. Sci. China Math....
    • 24. Yang, J., Zhao, L.: Limit cycle bifurcations for piecewise smooth Hamiltonian systems with a generalized eye-figure loop. Int. J. Bifurc....
    • 25. Zhao, L., Qi, M., Liu, C.: The cylicity of period annuli of a class of quintic Hamiltonian systems. J. Math. Anal. Appl. 403, 391–407...
    • 26. Zhao, Y., Zhang, Z.: Linear estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians. J. Differ. Equ. 155,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno