Ir al contenido

Documat


The largest topological ring of functions endowed with the m-topology

  • Chauhan, Tarun Kumar [1] ; Jindal, Varun [1]
    1. [1] National Institute Of Technology

      National Institute Of Technology

      Japón

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 23, Nº. 2, 2022, págs. 281-286
  • Idioma: inglés
  • DOI: 10.4995/agt.2022.17080
  • Enlaces
  • Resumen
    • The purpose of this article is to identify the largest subring of the ring of all real valued functions on a Tychonoff space X, which forms a topological ring endowed with the m-topology.

  • Referencias bibliográficas
    • F. Azarpanah, F. Manshoor and R. Mohamadian, Connectedness and compactness in C(X) with m-topology and generalized m-topology, Topol. Appl....
    • F. Azarpanah, M. Paimann and A. R. Salehi, Connectedness of some rings of quotients of C(X) with them-topology, Comment. Math. Univ. Carolin....
    • L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, New York,1976. Reprint of the 1960 edition, Graduate Texts in Mathematics,...
    • J. Gomez-Prez and W. W. McGovern, Them-topology on C m(X) revisited, Topol. Appl. 153, no. 11 (2006), 1838-1848. https://doi.org/10.1016/j.topol.2005.06.016
    • E. Hewitt, Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc. 64(1948), 45-99. https://doi.org/10.1090/S0002-9947-1948-0026239-9
    • L. Hola and V. Jindal, On graph and fine topologies, Topol. Proc. 49 (2017), 65-73.
    • L. Hola and R. A. McCoy, Compactness in the fine and related topologies, Topol. Appl.109 (2001), 183-190. https://doi.org/10.1016/S0166-8641(99)00160-1
    • L. Hola and B. Novotny, Topology of uniform convergence and m-topology on C(X), Mediterr. J. Math. 14 (2017): 70. https://doi.org/10.1007/s00009-017-0861-6
    • J. G. Horne, Countable paracompactness and cb-spaces, Notices. Amer. Math. Soc. 6 (1959), 629-630.
    • J. Mack, On a class of countably paracompact spaces, Proc. Amer. Math. Soc. 16 (1965),467-472. https://doi.org/10.1090/S0002-9939-1965-0177388-1
    • G. Di Maio, L. Hola, D. Holy and R. A. McCoy, Topologies on the space of continuous functions, Topol. Appl. 86 (1998), 105-122. https://doi.org/10.1016/S0166-8641(97)00114-4
    • R. A. McCoy, Fine topology on function spaces, Int. J. Math. Math. Sci. 9 (1986),417-424. https://doi.org/10.1155/S0161171286000534
    • R. A. McCoy, S. Kundu and V. Jindal, Function spaces with uniform, fine and graphtopologies, Springer Briefs in Mathematics, Springer, Cham,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno