Ir al contenido

Documat


On set star-Lindelöf spaces

  • Singh, Sumit [1]
    1. [1] University of Delhi

      University of Delhi

      India

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 23, Nº. 2, 2022, págs. 315-323
  • Idioma: inglés
  • DOI: 10.4995/agt.2022.17021
  • Enlaces
  • Resumen
    • A space X is said to be set star-Lindelöf if for each nonempty subset A of X and each collection U of open sets in X such that A ⊆⋃U, there is a countable subset V of U such that A ⊆ St (⋃V,U). The class of set star-Lindelöf spaces lie between the class of Lindel öf spaces and the class of star-Lindelöf spaces. In this paper, we investigate the relationship between set star-Lindelöf spaces and other related spaces by providing some suitable examples and study the topological properties of set star-Lindelöf spaces.

  • Referencias bibliográficas
    • A. V. Arhangel'skii, An external disconnected bicompactum of weight c is inhomogeneous, Dokl. Akad. Nauk SSSR. 175 (1967), 751-754.
    • M. Bonanzinga and M. V. Matveev, Some covering properties for ψ-spaces, Mat. Vesnik. 61 (2009), 3-11.
    • M. Bonanzinga, Star Lindelöf and absolutely star-Lindelöf spaces, Quest. Answ. Gen. Topol. 16 (1998), 79-104.
    • M. Bonanzinga and F. Maesano, Some properties defined by relative versions of star-covering properties, Topology Appl. 306 (2022), Article...
    • E. K. van Douwen, G. K. Reed, A. W. Roscoe and I. J. Tree, Star covering properties, Topology Appl. 39 (1991), 71-103. https://doi.org/10.1016/0166-8641(91)90077-Y
    • R. Engelking, General topology, PWN, Warszawa, 1977.
    • Lj. D. R. Kočinac and S. Konca, Set-Menger and related properties, Topology Appl. 275 (2020), Article no. 106996. https://doi.org/10.1016/j.topol.2019.106996
    • Lj. D. R. Kočinac, S. Konca and S. Singh, Set star-Menger and set strongly star-Menger spaces, Math. Slovaca 72 (2022), 185-196. https://doi.org/10.1515/ms-2022-0013
    • Lj. D. R. Kočinac and S. Singh, On the set version of selectively star-ccc spaces, J. Math. (2020) Article ID 9274503. https://doi.org/10.1155/2020/9274503
    • M. V. Matveev, A survey on star-covering properties, Topology Atlas, preprint No 330 1998.
    • S. Mrówka, On completely regular spaces, Fund. Math. 41 (1954), 105-106. https://doi.org/10.4064/fm-41-1-105-106
    • S. Singh, Set starcompact and related spaces, Afr. Mat. 32 (2021), 1389-1397. https://doi.org/10.1007/s13370-021-00906-5
    • S. Singh, Remarks on set-Menger and related properties, Topology Appl. 280 (2020), Article no. 107278. https://doi.org/10.1016/j.topol.2020.107278
    • S. Singh, On set-star-K-Hurewicz spaces, Bull. Belg. Math. Soc. Simon Stevin 28, no. 3 (2021), 361-372.
    • S. Singh, On set-star-K-Menger spaces, Publ. Math. Debrecen 100 (2022), 87-100. https://doi.org/10.5486/PMD.2022.9037
    • S. Singh, On set weak strongly star-Menger spaces, submitted.
    • S. Singh and Lj. D. R. Kočinac, Star versions of Hurewicz spaces, Hacet. J. Math. Stat. 50, no. 5 (2021), 1325-1333. https://doi.org/10.15672/hujms.819719
    • Y. K. Song, Remarks on neighborhood star-Lindelöf spaces, Filomat 27, no. 1 (2013), 149-155. https://doi.org/10.2298/FIL1301149S
    • Y. K. Song and W. F. Xuan, Remarks on new star-selection principles in topology, Topology Appl. 268 (2019), Paper no. 106921. https://doi.org/10.1016/j.topol.2019.106921
    • R. C. Walker, The stone-Čech compactification, Berlin, 1974. https://doi.org/10.1007/978-3-642-61935-9
    • W. F. Xuan and W. X. Shi, Notes on star Lindelöf spaces, Topology Appl. 204 (2016), 63-69. https://doi.org/10.1016/j.topol.2016.02.009

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno