Ir al contenido

Documat


Fredholm theory for demicompact linear relations

  • Ammar, Aymen [1] ; Fakhfakh, Slim [1] ; Jeribi, Aref [1]
    1. [1] University of Sfax

      University of Sfax

      Túnez

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 23, Nº. 2, 2022, págs. 425-436
  • Idioma: inglés
  • DOI: 10.4995/agt.2022.16940
  • Enlaces
  • Resumen
    • We first attempt to determine conditions on a linear relation T such that μT becomes a demicompact linear relation for each μ ∈ [0,1)(see Theorems 2.4 and 2.5). Second, we display some results on Fredholm and upper semi-Fredholm linear relations involving a demicompact one(see Theorems 3.1 and 3.2). Finally, we provide some results in which a block matrix of linear relations becomes a demicompact block matrix of linear relations (see Theorems 4.2 and 4.3).

  • Referencias bibliográficas
    • F. Abdmouleh, T. Álvarez, A. Ammar and A. Jeribi, Spectral mapping theorem for Rakocević and Schmoeger essential spectra of a multivalued...
    • A. Ammar, A characterization of some subsets of essential spectra of a multivalued linear operator, Complex Anal. Oper. Theory 11, no. 1 (2017),...
    • A. Ammar, Some results on semi-Fredholm perturbations of multivalued linear operators, Linear Multilinear Algebra 66, no. 7 (2018), 1311-1332....
    • A. Ammar, H. Daoud and A. Jeribi, Demicompact and K-D-setcontractive multivalued linear operators, Mediterr. J. Math. 15, no. 2 (2018): 41....
    • A. Ammar, S. Fakhfakh and A. Jeribi, Stability of the essential spectrum of the diagonally and off-diagonally dominant block matrix linear...
    • W. Chaker, A. Jeribi and B. Krichen, Demicompact linear operators, essential spectrum and some perturbation results, Math. Nachr. 288, no....
    • R. W. Cross, Multivalued Linear Operators, Marcel Dekker, (1998).
    • A. Jeribi, Spectral Theory and Applications of Linear Operator and Block Operator Matrices, Springer-Verlag, New York, 2015. https://doi.org/10.1007/978-3-319-17566-9
    • K. Kuratowski, Sur les espaces complets, Fund. Math. 15 (1930), 301-309. https://doi.org/10.4064/fm-15-1-301-309
    • W. V. Petryshyn, Remarks on condensing and k-set-contractive mappings, J. Math. Appl. 39 (1972),3 717-741. https://doi.org/10.1016/0022-247X(72)90194-1

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno