Ir al contenido

Documat


A Urysohn lemma for regular spaces

  • Gupta, Ankit [1] ; Sarma, Ratna Dev [1]
    1. [1] University of Delhi

      University of Delhi

      India

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 23, Nº. 2, 2022, págs. 243-253
  • Idioma: inglés
  • DOI: 10.4995/agt.2022.16720
  • Enlaces
  • Resumen
    • Using the concept of m-open sets, M-regularity and M-normality are introduced and investigated. Both these notions are closed under arbitrary product. M-normal spaces are found to satisfy a result similar to Urysohn lemma. It is shown that closed sets can be separated by m-continuous functions in a regular space.

  • Referencias bibliográficas
    • A. Blass, Injectivity, projectivity and the axiom of choice, Trans. Am. Math. Soc. 255 (1970), 31-59. https://doi.org/10.1090/S0002-9947-1979-0542870-6
    • C. Boonpok, ξμ-sets in generalized topological spaces, Acta Math. Hungar. 96 (2012), 269-285. https://doi.org/10.1007/s10474-011-0106-2
    • J. Dugundji, Topology, Allyn and Bacon (1966).
    • E. Fabrizi and A. Saffiotti, Behavioral Navigation on Topology-based Maps, in: Proc. of the 8th Symp. on robotics with applications, Maui,...
    • C. Good and I. J. Tree, Continuing horrors of topology without choice, Topology Appl. 63, no. 1 (1995), 79-90. https://doi.org/10.1016/0166-8641(95)90010-1
    • A. Gupta and R. D. Sarma, on $m$-open sets in topology, in: Conference Proceedings "3rd international conference on Innovative Approach...
    • I. M. James, Topologies and Uniformities, Springer-Verlag (1987).
    • J. L. Kelley, General Topology, D. Van Nostrand, Princeton, N. J., (1955).
    • V. Kovalesky and R. Kopperman, Some topology-based image processing algorithms, Ann. Ny. Acad. Sci. 728 (1994), 174-182. https://doi.org/10.1111/j.1749-6632.1994.tb44143.x
    • B. M. R. Stadler and P. F. Stadler, Generalized topological spaces in evolutionary theory and combinatorial chemistry, J. Chem. Inf. Comp....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno