Ir al contenido

Documat


Limit Cycles of Discontinuous Perturbed Quadratic Center via the Second Order Averaging Method

  • Fangfang Jiang [1]
    1. [1] Jiangnan University

      Jiangnan University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 3, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we study the number of limit cycles for a piecewise smooth quadratic integrable but non-Hamiltonian system having a center, which is separated by a straight line x=0 (called as a switching line). When the quadratic center perturbed inside discontinuous quadratic and cubic homogenous polynomials starting with terms of degree 1, by applying the second order averaging method of discontinuous differential equations, we obtain two criteria on the lower upper bounds of the maximum number of limit cycles bifurcating from the period annulus. And the bounds can be realized.

  • Referencias bibliográficas
    • 1. Buic˘a, A., Gasull, A., Yang, J.: The third order Melnikov function of a quadratic center under quadratic perturbations. J. Math. Anal....
    • 2. Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Applied Mathematical...
    • 3. Christopher C., Li C.: Limit Cycles of Differential Equations. Springer (2007)
    • 4. Chen, X., Zhang, W.: Isochronicity of centers in switching Bautin system. J. Differ. Equ. 252, 2877– 2899 (2012)
    • 5. Guo, L., Yu, P., Chen, Y.: Bifurcation analysis on a class of Z2-equivariant cubic switching systems showing eighteen limit cycles. J....
    • 6. Gong, S., Han, M.: Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters. Adv. Differ. Equ. 2020(1),...
    • 7. Han, M.: On the maximum number of periodic solutions of piecewise smooth periodic equations by average method. J. Appl. Anal. Comput. 7(2),...
    • 8. Han,M., Romanovski, V.G., Zhang, X.: Equivalence of theMelnikov function method and the averaging method. Qual. Theory Dyn. Syst. 15, 471–479...
    • 9. Han, M., Yang, J.: The maximum number of zeros of functions with parameters and application to differential equations. J. Nonlinear Model....
    • 10. Han, M., Lu, W.: Hopf bifurcation of limit cycles by perturbing piecewise integrable systems. Bull. Sci. Math. 161, 102866 (2020)
    • 11. Han, M., Sheng, L.: Bifurcation of limit cycles in piecewise smooth systems via Melnikov function. J. Appl. Anal. Comput. 5, 809–815 (2015)
    • 12. Kunze, M.: Non-smooth Dynamical Systems. Springer-Verlag, Berlin (2000)
    • 13. Liu, S., Han, M., Li, J.: Bifurcation methods of periodic orbits for piecewise smooth systems. J. Differ. Equ. 275, 204–233 (2021)
    • 14. Liu, X., Han, M.: Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems. Int. J. Bifurc. Chaos. 20, 1379–1390 (2013)
    • 15. Li, S., Liu, C.: A linear estimate of the number of limit cycles for some planar piecewise smooth quadratic differential system. J. Math....
    • 16. Llibre, J., Novaes, D.D., Teixeira, M.A.: On the birth of limit cycles for non-smooth dynamical systems. Bull. Sci. Math. 139(3), 229–244...
    • 17. Llibre, J., Mereu, A.C., Novaes, D.D.: Averaging theory for discontinuous piecewise differential systems. J. Differ. Equ. 258(11), 4007–4032...
    • 18. Llibre, J., Novaes, D.D., Rodrigues, C.A.B.: Averaging theory at any order for computing limit cycles of discontinuous piecewise differential...
    • 19. Llibre J., S´wirszcz G.: On the limit cycles of polynomial vector fields. Dyn. Contin. Discrete Impul. Syst. Ser. A Math. Anal. 18(2),...
    • 20. Llibre J., del R´io J.S.P., Rodr´iguez, J.A.: Averaging analysis of a perturbated quadratic center. Nonlinear Anal. 46(1), 45–51 (2001)
    • 21. Llibre, J., Mereu, A.C.: Limit cycles for discontinuous quadratic differential systems with two zones. J. Math. Anal. Appl. 413(2), 763–775...
    • 22. Llibre, J., Yu, J.: On the upper bound of the number of limit cycles obtained by the second order averaging method. Dyn. Contin. Discrete...
    • 23. Peng, L., Gao, Y., Feng, Z.: Limit cycles bifurcating from piecewise quadratic systems separated by a straight line. Nonlinear Anal. 196,...
    • 24. Tian, Y., Shang, X., Han, M.: Bifurcation of limit cycles in a piecewise smooth near-integrable system. J. Math. Anal. Appl. 504(2), 125578...
    • 25. Wei, L., Zhang, X.: Averaging theory of arbitrary order for piecewise smooth differential systems and its application. J. Dyn. Differ....
    • 26. Xiong, Y., Hu, J.: Limit cycle bifurcations in perturbations of planar piecewise smooth systems with multiply lines of critical points....
    • 27. Yang, J., Zhao, L.: Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete Contin. Dyn. Syst. Ser. B...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno