Ir al contenido

Documat


Sign-changing Solutions for the Chern-Simons-Schrödinger Equation with Concave-convex Nonlinearities

  • Zhi-Fang Liu [1] ; Chun-Lei Tang [1]
    1. [1] Southwest University

      Southwest University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 3, 2022
  • Idioma: inglés
  • Enlaces
  • Referencias bibliográficas
    • 1. Ambrosio, L., Dancer, N.: Calculus of variations and partial differential equations. In: Buttazzo, G., Marino, A., Murthy, M.K.V. (eds.)...
    • 2. Byeon, J., Huh, H., Seok, J.: Standing waves of nonlinear Schrödinger equations with the gauge field. J. Funct. Anal. 263, 1575–1608 (2012)
    • 3. Byeon, J., Huh, H., Seok, J.: On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrodinger equations. J....
    • 4. Bobkov, V.: Least energy nodal solutions for elliptic equations with indefinite nonlinearity, Electron. J. Qual. Theory. Differ. Equ. 56,...
    • 5. Chen, Z., Tang, X., Zhang, J.: Sign-changing multi-bump solutions for the Chern-Simons-Schrödinger equations in H1(R2). Adv. Nonlinear...
    • 6. Drábek, P., Pohozaev, S.I.: Positive solution for the p-Laplacian: application of the fibering method. Proc. R. Soc. Edinb. Sect. A. Math....
    • 7. Deng, Y., Peng, S., Shuai, W.: Nodal standing waves for a gauged nonlinear Schrödinger equation in R2. J. Differ. Equ. 264, 4006–4035 (2018)
    • 8. Jackiw, R., Pi, S.: Classical and quantal nonrelativistic Chern-Simons theory. Phys. Rev. D. 42, 3500– 3513 (1990)
    • 9. Jackiw, R., Pi, S.: Soliton solutions to the gauged nonlinear Schrödinger equation on the plane. Phys. Rev. Lett. 64, 2969–2972 (1990)
    • 10. Kang, J.-C., Li, Y.-Y., Tang, C.-L.: Sign-changing solutions for Chern-Simons-Schrödinger equations with Asymptotically 5-linear Nolinearity....
    • 11. Kang, J.C., Tang, C.L.: Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth....
    • 12. Li, G.B., Luo, X., Shuai, W.: Sign-changing solutions to a gauged nonlinear Schrödinger equation. J. Math. Anal. Appl. 455, 1559–1578...
    • 13. Liang, W.N., Zhai, C.B.: Solutions to a gauged nonlinear Schrödinger equation with concave-convex nonlinearities without(AR) condition....
    • 14. Liu, Z.S., Ouyang, Z.G., Zhang, J.J.: Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrödinger equation...
    • 15. Pomponio, A., Ruiz, D.: Boundary concentration of a gauged nonlinear Schrödinger equation on large balls. Calc. Var. Partial. Differ....
    • 16. Tang, X., Zhang, J., Zhang,W.: Existence and concentration of solutions for Chern-Simons-Schrödinger system with general nonlinearity....
    • 17. Willem, M.: Minimax Theorems. Birkhäuser Boston Inc, Boston, MA (1996)
    • 18. Xie, W., Chen, C.: Sign-changing solutions for the nonlinear Chern-Simons-Schrödinger equations. Appl. Anal. 99, 880–898 (2020)
    • 19. Yang, Z.-L., Ou, Z.-Q.: Nodal solutions for Schrödinger-Poisson system with concave-convex nonlinearities. J. Math. Anal. Appl. 499, 125006...
    • 20. Zhang, J., Zhang, W., Xie, X.: Infinitely many soulutions for a gauged nonlinear Schrödinger equation. Appl. Math. Lett. 88, 21–27 (2019)
    • 21. Zhang, J., Tang, X., Zhao, F.: On multiplicity and concentration of solutions for a gauged nonlinear Schrödinger equation. Appl. Anal....
    • 22. Zhang, W., Mi, H., Liao, F.: Concentration behavior and multiplicity of solutions to a gauged nonlinear Schrödinger equation. Appl. Math....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno