Ir al conteni
d
o
B
uscar
R
evistas
T
esis
Libr
o
antiguo
Co
n
gresos
A
u
tores
Ayuda
Cambiar idioma
Idioma
català
Deutsch
English
español
euskara
français
galego
italiano
português
română
Cambiar
Sign-changing Solutions for the Chern-Simons-Schrödinger Equation with Concave-convex Nonlinearities
Zhi-Fang Liu
[1]
;
Chun-Lei Tang
[1]
[1]
Southwest University
Southwest University
China
Localización:
Qualitative theory of dynamical systems
,
ISSN
1575-5460,
Vol. 21, Nº 3, 2022
Idioma:
inglés
Enlaces
Texto completo
Referencias bibliográficas
1. Ambrosio, L., Dancer, N.: Calculus of variations and partial differential equations. In: Buttazzo, G., Marino, A., Murthy, M.K.V. (eds.)...
2. Byeon, J., Huh, H., Seok, J.: Standing waves of nonlinear Schrödinger equations with the gauge field. J. Funct. Anal. 263, 1575–1608 (2012)
3. Byeon, J., Huh, H., Seok, J.: On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrodinger equations. J....
4. Bobkov, V.: Least energy nodal solutions for elliptic equations with indefinite nonlinearity, Electron. J. Qual. Theory. Differ. Equ. 56,...
5. Chen, Z., Tang, X., Zhang, J.: Sign-changing multi-bump solutions for the Chern-Simons-Schrödinger equations in H1(R2). Adv. Nonlinear...
6. Drábek, P., Pohozaev, S.I.: Positive solution for the p-Laplacian: application of the fibering method. Proc. R. Soc. Edinb. Sect. A. Math....
7. Deng, Y., Peng, S., Shuai, W.: Nodal standing waves for a gauged nonlinear Schrödinger equation in R2. J. Differ. Equ. 264, 4006–4035 (2018)
8. Jackiw, R., Pi, S.: Classical and quantal nonrelativistic Chern-Simons theory. Phys. Rev. D. 42, 3500– 3513 (1990)
9. Jackiw, R., Pi, S.: Soliton solutions to the gauged nonlinear Schrödinger equation on the plane. Phys. Rev. Lett. 64, 2969–2972 (1990)
10. Kang, J.-C., Li, Y.-Y., Tang, C.-L.: Sign-changing solutions for Chern-Simons-Schrödinger equations with Asymptotically 5-linear Nolinearity....
11. Kang, J.C., Tang, C.L.: Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth....
12. Li, G.B., Luo, X., Shuai, W.: Sign-changing solutions to a gauged nonlinear Schrödinger equation. J. Math. Anal. Appl. 455, 1559–1578...
13. Liang, W.N., Zhai, C.B.: Solutions to a gauged nonlinear Schrödinger equation with concave-convex nonlinearities without(AR) condition....
14. Liu, Z.S., Ouyang, Z.G., Zhang, J.J.: Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrödinger equation...
15. Pomponio, A., Ruiz, D.: Boundary concentration of a gauged nonlinear Schrödinger equation on large balls. Calc. Var. Partial. Differ....
16. Tang, X., Zhang, J., Zhang,W.: Existence and concentration of solutions for Chern-Simons-Schrödinger system with general nonlinearity....
17. Willem, M.: Minimax Theorems. Birkhäuser Boston Inc, Boston, MA (1996)
18. Xie, W., Chen, C.: Sign-changing solutions for the nonlinear Chern-Simons-Schrödinger equations. Appl. Anal. 99, 880–898 (2020)
19. Yang, Z.-L., Ou, Z.-Q.: Nodal solutions for Schrödinger-Poisson system with concave-convex nonlinearities. J. Math. Anal. Appl. 499, 125006...
20. Zhang, J., Zhang, W., Xie, X.: Infinitely many soulutions for a gauged nonlinear Schrödinger equation. Appl. Math. Lett. 88, 21–27 (2019)
21. Zhang, J., Tang, X., Zhao, F.: On multiplicity and concentration of solutions for a gauged nonlinear Schrödinger equation. Appl. Anal....
22. Zhang, W., Mi, H., Liao, F.: Concentration behavior and multiplicity of solutions to a gauged nonlinear Schrödinger equation. Appl. Math....
Acceso de usuarios registrados
Identificarse
¿Olvidó su contraseña?
¿Es nuevo?
Regístrese
Ventajas de registrarse
Mi Documat
S
elección
Opciones de artículo
Seleccionado
Opciones de compartir
Facebook
Twitter
Opciones de entorno
Sugerencia / Errata
©
2008-2024
Fundación Dialnet
· Todos los derechos reservados
Accesibilidad
Aviso Legal
Coordinado por:
I
nicio
B
uscar
R
evistas
T
esis
Libr
o
antiguo
A
u
tores
Ayuda
R
e
gistrarse
¿En qué podemos ayudarle?
×
Buscar en la ayuda
Buscar