Ir al contenido

Documat


Smooth determinantal varieties and critical loci in multiview geometry

  • Bertolini, Marina [1] ; Notari, Roberto [1] ; Turrini, Cristina [1] Árbol académico
    1. [1] University of Milan

      University of Milan

      Milán, Italia

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 73, Fasc. 3, 2022, págs. 457-475
  • Idioma: inglés
  • DOI: 10.1007/s13348-021-00329-2
  • Enlaces
  • Resumen
    • Linear projections from \mathbb {P}^k to \mathbb {P}^h appear in computer vision as models of images of dynamic or segmented scenes. Given multiple projections of the same scene, the identification of sufficiently many correspondences between the images allows, in principle, to reconstruct the position of the projected objects. A critical locus for the reconstruction problem is a variety in \mathbb {P}^k containing the set of points for which the reconstruction fails. Critical loci turn out to be determinantal varieties. In this paper we determine and classify all the smooth critical loci, showing that they are classical projective varieties.

  • Referencias bibliográficas
    • Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.D.: Geometry of Algebraic Curves. Springer, New York (1985)
    • Åström, K., Kahl, F.: Ambiguous configurations for the 1D structure and motion problem. J. Math. Imaging Vis. 18, 191–203 (2003)
    • Beauville, A.: Determinantal hypersurfaces. Mich. Math. J. 48, 39–64 (2000)
    • Bertolini, M., Besana, G., Turrini, C.: Applications of multiview tensors in higher dimensions. In: Aja-Fernández, S., de Luis Garcia, R.,...
    • Bertolini, M., Besana, G., Turrini, C.: Critical loci for projective reconstruction from multiple views in higher dimension: a comprehensive...
    • Bertolini, M., Besana, G.M., Notari, R., Turrini, C.: Critical loci in computer vision and matrices dropping rank in codimension one. J. Pure...
    • Bertolini, M., Magri, L.: Critical hypersurfaces and instability for reconstruction of scenes in high dimensional projective spaces. Mach....
    • Bertolini, M., Notari, R., Turrini, C.: The Bordiga surface as critical locus for 3-view reconstructions. J. Symb. Comp. 91(2019), 74–97 (2017)
    • Bertolini, M., Notari, R., Turrini, C.: Critical configurations for 1-view in projections from \mathbb{P}^{k} \rightarrow \mathbb{P}^{2}....
    • Bruns, W., Vetter, U.: Determinantal Rings. Springer, New York (1988)
    • Buchanan, T.: The twisted cubic and camera calibration. Comput. Vis. Gr. Image Process. 42(1), 130–132 (1988)
    • Eisenbud, D.: Commutative Algebra. With a View Toward Algebraic Geometry. Springer, Berlin (1995)
    • Eisenbud, D., Harris, J.: On varieties of minimal degree (A Centennial Account). Proc. Symp. Pure Math. 46, 3–13 (1987)
    • Fania, M.L., Livorni, E.L.: Degree ten manifolds of dimension n greater than or equal to 3. Math. Nachr. 188, 79–108 (1997)
    • Hahn, M.A., Lamboglia, S., Vargas, A.: A short note on Cayley–Salmon equations. Le Matematiche, vol. LXXV, Issue II (2020), pp. 559–574
    • Hartley, R.I.: Ambiguous configurations for 3-view projective reconstruction. Eur. Conf. Comput. Vis. I, 922–935 (2000)
    • Hartley, R.I., Kahl, F.: Critical configurations for projective reconstruction from multiple views. Int. J. Comput. Vis. 71(1), 5–47 (2007)
    • Hartley, R.I., Schaffalitzky, F.: Reconstruction from projections using Grassmann tensors. In: Proceedings of the 8th European Conference...
    • Hartley, R., Vidal, R.: The multibody trifocal tensor: motion segmentation from 3 perspective views. In: Conference on Computer Vision and...
    • Ionescu, P.: Embedded projective varieties of small invariants. In: Proceeding of 1982 Week of Algebraic Geometry, Bucharest. LNM 1056 (1984),...
    • Jessop, C.M.: Quartic Surface. Cambridge University Press, Cambridge (1916)
    • Kahl, F., Hartley, R., Åström, K.: Critical configurations for n-view projective reconstruction. In: IEEE Computer Society Conference on Computer...
    • Krames, J.: Zur ermittlung eines objectes aus zwei perspectiven (ein beitrag zur theorie der “gefhahlichen Orter’’). Monatsh. Math. Phys....
    • Maybank, S.J.: Theory of Reconstruction from Image Motion. Springer, New York (1992)
    • Miró-Roig, R.M.: Lectures on Determinantal Ideal. Notes of the School in Commutative Algebra, Mumbai (2008)
    • Miró–Roig, R.M.: Determinantal Ideals. Progress in Mathematics 264,Birkhäuser, (2008)
    • Ottaviani, G.: On 3-folds in \mathbb{P}^5 which are scrolls. Annali Scuola Normale Pisa 19(3), 451–471 (1992)
    • Room, T..G.: Self-transformations of determinantal quartic surfaces. II. Proc. Lond. Math. Soc. 51(2), 362–382 (1950)
    • Room, T..G.: Self-transformations of determinantal quartic surfaces. III. Proc. Lond. Math. Soc. 51(2), 383–387 (1950)
    • Room, T..G.: Self-transformations of determinantal quartic surfaces. IV. Proc. Lond. Math. Soc. 51(2), 388–400 (1950)
    • Shashua, A., Maybank, S.J.: Degenerate n point configurations of three views: Do critical surfaces exist? TR 96-19, Hebrew University, (1996)
    • Wolf, L., Shashua, A.: On projection matrices \mathbb{P}^k \rightarrow \mathbb{P}^2, k=3,..., 6 and their applications in computer vision....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno