Ir al contenido

Documat


Oscillations on one dimensional time dependent center manifolds: algebraic curves approach

  • Rabiei Motlagh, O. [1] ; Molaei Derakhtenjani, M. [1] ; Mohammadi Nejad [1]
    1. [1] University of Birjand

      University of Birjand

      Irán

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 73, Fasc. 3, 2022, págs. 433-456
  • Idioma: inglés
  • DOI: 10.1007/s13348-021-00328-3
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We consider a one dimensional time dependent ODE of degree n≥2 as the restriction of an arbitrary nonautonomous ODE to the associated one dimensional center manifold. Then, we present an algorithm for computing time dependent algebraic curves of m-th degree with m≤n−1. This computation leads us to a m dimensional time dependent bifurcation equation. We determine oscillatory behaviors of the system with the help of the bifurcation equation. Finally, we complete the method for a general parametric planar system and find periodic solutions. The method can be applied for a wide range of nonautonomous systems and does not have restrictions of classical methods such as the Poincaré map.

  • Referencias bibliográficas
    • Algaba, A., Checa, I., Garcia, C., Gine, J.: Analytic integrability inside a family of degenerate centers. Nonlinear Anal. Real World Appl....
    • Aulbach, B.: A reduction principle for nonautonomous differential equations. Arch. Math. 39, 217–232 (1982)
    • Candido, M.R., Llibre, J., Valls, C.: Non-existence, existence, and uniqueness of limit cycles for a generalization of the Van der Pol-Duffing...
    • Candido, M.R., Novaes, D.D.: On the torus bifurcation in averaging theory. J. Differ. Equ. 268, 4555–4576 (2020)
    • Cheng, H., de la Llave, R.: Time dependent center manifold in PDEs. Discrete Contin. Dyn. Syst. 40(12), 6709–6745 (2020)
    • Church, K.E.M., Liu, X.: Computation of center manifolds and some codimension-one bifurcations for impulsive delay differential equations....
    • da Cruz, L.P.C., Torregrosa, J.: Simultaneous bifurcation of limit cycles from a cubic piecewise center with two period annuli. J. Math. Anal....
    • Darboux, G.: Memoire sur les equations differentielles algebriques du premier ordre et du premier degre(Melanges). Bull. Sci. Math 2, 60–96,...
    • Fabbri, R., Johnson, R.: A nonautonomous saddle-node bifurcation pattern. Stochastics Dyn. 4(3), 335–350 (2004)
    • Franca, M., Johnson, R.: Remarks on nonautonomous bifurcation theory. Rend. Istit. Mat. Univ. Trieste 49, 215–243 (2017)
    • Franca, M., Johnson, R.: On the non-autonomous Hopf bifurcation problem: systems with rapidly varying coefficients. Electron. J. Qual. Theory...
    • Franca, M., Johnson, R., Munoz-Villarragut, V.: On the nonauotonomous Hopf bifurcation problem. Discrete Contin. Dyn. Syst. Ser. S 9(4), 1119–1148...
    • Guo, L., Yu, P., Chen, Y.: Bifurcation analysis on a class of Z_{2}-equivariant cubic switching systems showing eighteen limit cycles. J....
    • Kelley, A.: The stable, center-stable, center, center-unstable, unstable manifolds. J. Differ. Equ. 3, 546–570 (1967)
    • Kloeden, P.E., Potzsche, C.: Nonautonomous bifurcation scenarios in SIR models. Math. Meth. Appl. Sci. 38, 3495–3518 (2015)
    • Kloeden, P.E., Rasmussen, M.: Nonautonomous Dynamical Systems. American Mathematical Society (2011)
    • Knobloch, H.W., Aulbach, B.: The role of center manifolds in ordinary differential equations. BSB B.G. Teubner Verlagsgesellschaft 47, 179–189...
    • Li, J., Quan, T., Zhang, W.: Bifurcation and number of subharmonic solutions of a 4D non-autonomous slow-fast system and its application....
    • Llibre, J., Pantazi, Ch.: Darboux theory of integrability for a class of nonautonomous vector fields. J. Math. Phys. 50, 102705 (2009)
    • Llibre, J., Ramirez, R., Ramirez, V.: An inverse approach to the center problem. Rend. Circ. Mat. Palermo, II. Ser (2018)
    • Llibre, J., Swirszcz, G.: Relationships between limit cycles and algebraic invariant curves for quadratic systems. J. Differ. Equ. 229, 529–537...
    • Malkin, I.G.: Theory of Stability of Motion. U.S. Atomic Energy Commission, Office of Technical Information (1959)
    • Molnar, T.G., Dombovari, Z., Insperger, T., Stepan, G.: Bifurcation analysis of nonlinear time-periodic time-delay systems via semidiscretization....
    • Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2001)
    • Poincaré, H.: Sur l’equilibre d’une masse fluide animee d’un mouvement de rotation. Acta Mathematica 7, 259–380 (1885)
    • Potzsche, C., Rasmussen, M.: Taylor approximation of integral manifolds. J. Dyn. Differ. Equ. 18(2), 427–460 (2006)
    • Sell, G.R.: The structure of a flow in the vicinity of an almost periodic motion. J. Differ. Equ. 27, 359–393 (1978)
    • Sheng, L., Wang, S., Li, X., Han, M.: Bifurcation of periodic orbits of periodic equations with multiple parameters by averaging method. J....
    • Sinha, S.C.: On the analysis of time-periodic nonlinear dynamical systems. Sadhana 22(3), 411–434 (1997)
    • Szalai, R., Stepan, G.: Period doubling bifurcation and center manifold reduction in a time-periodic and time-delayed model of machining....
    • Virgin, L.N., Thompson, J.M.T.: Applications of bifurcation: nonautonomous periodically-excited systems. Int. J. Bifurc. Chaos 28(11), 1830035...
    • Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)
    • Xu, J., Yu, P.: Delay-induced bifurcations in a nonautonomous system with delayed velocity feedbacks. Int. J. Bifurc. Chaos 14(8), 2777–2798...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno