Ir al contenido

Documat


A generalized Grobman–Hartman theorem for nonautonomous dynamics

  • Backes, Lucas [1] ; Dragičević, Davor [2]
    1. [1] Universidade Federal do Rio Grande do Sul

      Universidade Federal do Rio Grande do Sul

      Brasil

    2. [2] University of Rijeka

      University of Rijeka

      Croacia

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 73, Fasc. 3, 2022, págs. 411-431
  • Idioma: inglés
  • DOI: 10.1007/s13348-021-00327-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The purpose of this note is to extend the recent generalized version of the Grobman–Hartman theorem established by Bernardes Jr. and Messaoudi from an autonomous to nonautonomous dynamics. More precisely, we prove that any sufficiently small perturbation of a nonautonomous linear dynamics that admits a generalized exponential dichotomy is topologically conjugated to its linear part. In addition, we prove that under certain mild additional conditions, the conjugacy is in fact Hölder continuous.

  • Referencias bibliográficas
    • Aulbach, B., Wanner, T.: Topological simplification of nonautonomous difference equations. J. Differ. Equ. Appl. 12, 283–296 (2006)
    • Backes, L., Dragičević, D.: Shadowing for nonautonomous dynamics. Adv. Nonlinear Stud. 19, 425–436 (2019)
    • Backes, L., Dragičević, D.: Shadowing for infinite dimensional dynamics and exponential trichotomies. Proc. R. Soc. Edinb. Sect. A Math. 151,...
    • Barreira, L., Dragičević, D., Valls, C.: Existence of conjugacies and stable manifolds via suspensions. Electron. J. Differ. Eq. 172, 1–11...
    • Belitskii, G.R.: Functional equations and the conjugacy of diffeomorphism of finite smoothness class. Funct. Anal. Appl. 7, 268–277 (1973)
    • Belitskii, G.R.: Equivalence and normal forms of germs of smooth mappings. Russian Math. Surv. 33, 107–177 (1978)
    • Bernardes, N.C., Jr., Messaoudi, A.: A generalized Grobman–Hartman theorem. Proc. Am. Math. Soc. 148, 4351–4360 (2020)
    • Bernardes, N.C., Jr., Messaoudi, A.: Shadowing and structural stability for operators. Ergod. Theory Dyn. Syst. 41, 961–980 (2021)
    • Castañeda, A., Robledo, G.: Differentiability of Palmers linearization theorem and converse result for density function. J. Differ. Equ. 259,...
    • Cirilo, P. R., Gollobit, B., Pujals, E. R.: Generalized hyperbolicity for linear operators, preprint, (2019)
    • Coppel, W.A.: Dichotomies in Stability Theory. Springer, Berlin, Heidelberg, New-York (1978)
    • Cuong, L.V., Doan, T.S., Siegmund, S.: A Sternberg theorem for nonautonomous differential equations. J. Dyn. Diff. Eq. 31, 1279–1299 (2019)
    • Dragičević, D., Zhang, W., Zhang, W.: Smooth linearization of nonautonomous difference equations with a nonuniform dichotomy. Math. Z. 292,...
    • Dragičević, D., Zhang, W., Zhang, W.: Smooth linearization of nonautonomous differential equations with a nonuniform dichotomy. Proc. Lond....
    • Elaydi, S., Hajek, O.: Exponential trichotomy of differential systems. J. Math. Anal. Appl. 129, 362–374 (1988)
    • ElBialy, M.S.: Local contractions of Banach spaces and spectral gap conditions. J. Funct. Anal. 182, 108–150 (2001)
    • ElBialy, M.S.: Smooth conjugacy and linearization near resonant fixed points in Hilbert spaces. Houston J. Math. 40, 467–509 (2014)
    • Grobman, D.: Homeomorphism of systems of differential equations. Dokl. Akad. Nauk SSSR 128, 880–881 (1959)
    • Grobman, D.: Topological classification of neighborhoods of a singularity in n-space. Mat. Sb. (N.S.) 56, 77–94 (1962)
    • Hartman, P.: A lemma in the theory of structural stability of differential equations. Proc. Am. Math. Soc. 11, 610–620 (1960)
    • Hartman, P.: On the local linearization of differential equations. Proc. Am. Math. Soc. 14, 568–573 (1963)
    • Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin, New York (1981)
    • Jiang, L.: Generalized exponential dichotomy and global linearization. J. Math. Anal. Appl. 315, 474–490 (2006)
    • Lin, F.: Hartmans linearization on nonautonomous unbounded system. Nonlinear Anal. 66, 38–50 (2007)
    • Lopez-Fenner, J., Pinto, M.: On a Hartman linearization theorem for a class of ODE with impulse effect. Nonlinear Anal. 38, 307–325 (1999)
    • Palis, J.: On the local structure of hyperbolic points in Banach spaces. An. Acad. Brasil. Cienc. 40, 263–266 (1968)
    • Palmer, K.: A generalization of Hartmans linearization theorem. J. Math. Anal. Appl. 41, 753–758 (1973)
    • Papaschinopoulos, G.: On exponential trichotomy of linear difference equations. Appl. Anal. 40, 89–109 (1991)
    • Pugh, C.: On a theorem of P. Hartman. Am. J. Math. 91, 363–367 (1969)
    • Reinfelds, A., Šteinberga, D.: Dynamical equivalence of quasilinear equations. Int. J. Pure Appl. Math. 98, 355–364 (2015)
    • Rodrigues, H.M., Solà-Morales, J.: Smooth linearization for a saddle on Banach spaces. J. Dyn. Differ. Equ. 16, 767–793 (2004)
    • Rodrigues, H.M., Solà-Morales, J.: Invertible contractions and asymptotically stable ODEs that are not C^1-linearizable. J. Dyn. Differ. Equ....
    • Shi, J.L., Xiong, K.Q.: On Hartmans linearization theorem and Palmers linearization theorem. J. Math. Anal. Appl. 192, 813–832 (1995)
    • Sternberg, S.: Local contractions and a theorem of Poincare. Am. J. Math. 79, 809–824 (1957)
    • Zhang, W.M., Zhang, W.N.: Sharpness for C^1 linearization of planar hyperbolic diffeomorphisms. J. Differ. Equ. 257, 4470–4502 (2014)
    • Zhang, W.M., Zhang, W.N., Jarczyk, W.: Sharp regularity of linearization for C^{1, 1} hyperbolic diffeomorphisms. Math. Ann. 358, 69–113 (2014)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno