Ir al contenido

Documat


Monomial ideals and the failure of the Strong Lefschetz property

  • Altafi, Nasrin [1] ; Lundqvist, Samuel [2]
    1. [1] Royal Institute of Technology

      Royal Institute of Technology

      Suecia

    2. [2] Stockholm University

      Stockholm University

      Suecia

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 73, Fasc. 3, 2022, págs. 383-390
  • Idioma: inglés
  • DOI: 10.1007/s13348-021-00324-7
  • Enlaces
  • Resumen
    • We give a sharp lower bound for the Hilbert function in degree d of artinian quotients \Bbbk [x_1,\ldots ,x_n]/I failing the Strong Lefschetz property, where I is a monomial ideal generated in degree d \ge 2. We also provide sharp lower bounds for other classes of ideals, and connect our result to the classification of the Hilbert functions forcing the Strong Lefschetz property by Zanello and Zylinski.

  • Referencias bibliográficas
    • Altafi, N., Boij, M.: The weak Lefschetz property of equigenerated monomial ideals. J. Algebra 556, 136–168 (2020)
    • Brenner, H., Kaid, A.: A note on the weak Lefschetz property of monomial complete intersections in positive characteristic. Collect. Math....
    • Geramita, A.V.: Inverse systems of fat points: Waring’s problem, secant varieties of Veronese varieties and parameter spaces for Gorenstein...
    • Gordan, P., Nöther, M.: Ueber die algebraischen formen, deren hesse’sche determinante identisch verschwindet. Math. Ann. 4(10), 547–568 (1876)
    • Grayson, D., Stillman, M.: Macaulay2, a software system for research in algebraic geometry. http://www2.macaulay2.com/Macaulay2/Citing/. Accessed...
    • Harima, T., Migliore, J., Nagel, U., Watanabe, J.: The weak and strong Lefschetz properties for Artinian K-algebras. J. Algebra 262, 99–126...
    • Iarrobino, A., Kanev, V.: Power Sums, Gorenstein Algebras, and Determinantal Loci. Appendix C by Iarrobino and Steven L. Kleiman. Lecture...
    • Macaulay, F.S.: Some properties of enumeration in the theory of modular systems. Proc. Lond. Math. Soc. 2(26), 531–555 (1927)
    • Mezzetti, E., Miró-Roig, R.M.: The minimal number of generators of a Togliatti system. Ann. Mat. Pura Appl. 195, 2077–2098 (2016)
    • Mezzetti, E., Miró-Roig, R.M., Ottaviani, G.: Laplace equations and the weak Lefschetz property. Can. J. Math. 65(3), 634–654 (2013)
    • Migliore, J., Miró-Roig, R.M., Nagel, U.: Monomial ideals, almost complete intersections and the weak Lefschetz property. Trans. Am. Math....
    • Migliore, J., Nagel, U.: A tour of the weak and strong Lefschetz properties. J. Commut. Algebra 5(3), 329–358 (2013)
    • Migliore, J., Zanello, F.: The Hilbert functions which force the Weak Lefschetz property. J. Pure Appl. Algebra 210(2), 465–471 (2007)
    • Nicklasson, L.: Maximal rank properties, a Macaulay2 package (2019). https://github.com/LisaNicklasson/MaximalRankProperties-Macaulay2-package....
    • Stanley, R.P.: Weyl groups, the hard Lefschetz theorem, and the Sperner property. SIAM J. Algebraic Discrete Methods 1(2), 168–184 (1980)
    • Togliatti, E.: Alcuni esempî di superficie algebriche degli iperspazî che rappresentano un’equazione di Laplace. Commun. Math. Helv. 1, 255–272...
    • Togliatti, E.: Alcune osservazioni sulle superficie razionali che rappresentano equazioni di Laplace. Ann. Mat. Pura Appl. 25, 325–339 (1946)
    • Zanello, F., Zylinski, J.V.: Forcing the strong Lefschetz and the maximal rank properties. J. Pure Appl. Algebra 213(6), 1026–1030 (2009)
    • Watanabe, J.: The Dilworth number of Artinian rings and finite posets with rank function. In: Commutative Algebra and Combinatorics, Advanced...
    • Wiebe, A.: The Lefschetz property for component wise linear ideals and Gotzmann ideals. Commun. Algebra 32(12), 4601–4611 (2004)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno