Ir al contenido

Documat


Weighted endpoint estimates for the composition of Calderón–Zygmund operators on spaces of homogeneous type

  • Liu, Dongli [1] ; Zhao, Jiman [1]
    1. [1] Beijing Normal University

      Beijing Normal University

      China

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 73, Fasc. 3, 2022, págs. 359-382
  • Idioma: inglés
  • DOI: 10.1007/s13348-021-00323-8
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let T_{1}, T_{2} be two Calderón–Zygmund operators, by establishing bilinear sparse domination of T_{1}, T_{2} , we obtain the weighted endpoint estimate for the composite operator T_{1}, T_{2}.

  • Referencias bibliográficas
    • Anderson, T.C., Damián, W.: Calderon-Zygmund operators and commutators in spaces of homogeneous type: weighted inequalities. arXiv:1401.2061v1
    • Benea, C., Bernicot, F.: Conservation de certains propriétés á travers un contrôle épars d, un opérateur et applications au projecteur de...
    • Bernicot, F., Frey, D., Petermichl, S.: Sharp weighted norm estimates beyond Calderón–Zygmund theory. Anal. PDE 9, 1079–1113 (2016)
    • Calderón, A.P., Zygmund, A.: On the existence of certain singular integrals. Acta Math. 88, 85–139 (1952)
    • Coifman, R.R., Weiss, G.: Analyse Harmonique Non-commutative sur certains espaces homogènes, pp. 66–98. Springer, Berlin (1971)
    • Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc 83, 569–645 (1977)
    • Conde-Alonso, J.M., Culiuc, A., Di Plinio, F., Ou, Y.: A sparse domination principle for rough singular integrals. Anal. PDE 10, 1255–1284...
    • Conde-Alonso, J.M., Rey, G.: A pointwise estimate for positive dyadic shifts and some applications. Math. Ann. 365, 1111–1135 (2016)
    • Cruz-Uribe, D., Martell, J.M., Pérez, C.: Weights, Extrapolation and the Theory of Rubio de Francia, pp. 97–113. Birkhäuser Basel, Basel (2011)
    • Duong, X.T., Gong, R., Kuffner, M.J.S., Li, J., Wick, B.D., Yang, D.: Two weight commutators on spaces of homogeneous type and applications....
    • Genebashvili, I., Gogatishvili, A., Kokilashvili, V., Krbec, M.: Weight Theory for Integral Transforms on Spaces of Homogeneous Type, pp....
    • Hu, G.: Quantitative weighted bounds for the composition of Calderón–Zygmund operators. Banach J. Math. Anal. 13, 133–150 (2019)
    • Hu, G.: Weighted weak type endpoint estimates for the compositions of Calderón–Zygmund operators. J. Aust. Math. Soc. 109, 320–339 (2020)
    • Hu, G., Lai, X., Xue, Q.: On the compositions of rough singular integral operators. arXiv:1811.02878v2
    • Hu, G., Li, D.: A Cotlar type inequality for the multilinear singular integral operators and its applications. J. Math. Anal. Appl. 290, 639–653...
    • Hu, G., Yang, D.: Weighted estimates for singular integral operators with non-smooth kernels. J. Aust. Math. Soc. 85, 377–417 (2008)
    • Hu, G., Yang, D., Yang, D.: Boundedness of maximal singular integral operators on spaces of homogeneous type and its applications. J. Math....
    • Hytönen, T.: The sharp weighted bound for general Calderón-Zygmund operators. Ann. Math. 175, 1473–1506 (2012)
    • Hytönen, T., Kairema, A.: Systems of dyadic cubes in a doubling metric space. Colloq. Math. 126, 1–33 (2012)
    • Hytönen, T., Lacey, M.: The A_{p}-A_{\infty } inequality for general Calderón-Zygmund operators. Indiana Univ. Math. J. 61, 2041–2052 (2012)
    • Hytönen, T., Pérez, C.: Sharp weighted bounds involving A_{\infty }. Anal. PDE 6, 777–818 (2013)
    • Hytönen, T., Pérez, C.: The L(\log L)^{\epsilon } endpoint estimate for maximal singular integral operators. J. Math. Anal. Appl. 428, 605–626...
    • Hytönen, T., Roncal, L., Tapiola, O.: Quantitative weighted estimates for rough homogeneous singular integrals. Israel J. Math 218, 133–164...
    • Lacey, M.T.: An elementary proof of the A_{2} bound. Israel J. Math. 217, 181–195 (2017)
    • Lerner, A.K.: A simple proof of the A_{2} conjecture. Int. Math. Res. Not. 14, 3159–3170 (2013)
    • Lerner, A.K.: On pointwise estimates involving sparse operators. N. Y. J. Math 22, 341–349 (2016)
    • Macías, R., Segovia, C.: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33, 257–270 (1979)
    • Meyer, Y., Coifman, R.R.: Wavelets, Calderón–Zygmund and Multilinear Operators, pp. 77–105. Cambridge University Press, Cambridge (1997)
    • Petermichl, S.: The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A_{p} characteristic. Am....
    • Petermichl, S.: The sharp weighted bound for the Riesz transforms. Proc. Am. Math. Soc. 136, 1237–1249 (2008)
    • Pradolini, G., Salinas, O.: Commutators of singular integrals on spaces of homogeneous type. Czechoslov. Math. J. 57, 75–93 (2007)
    • Yuan, X., Zhang, H.: Composition of maximal operators on space of homogeneous type. Chin. Quart. J. Math. 25, 249–256 (2010)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno