Ir al contenido

Documat


Structure of the Lipschitz free p-spaces {\mathcal{F}}_p({\mathbb{Z}}^d) and {\mathcal{F}}_p({\mathbb{R}}^d) for 0<p\le 1

  • Albiac, Fernando [1] Árbol académico ; Ansorena, José L. [2] Árbol académico ; Cúth, Marek [3] Árbol académico ; Doucha, Michal [4]
    1. [1] Universidad Pública de Navarra

      Universidad Pública de Navarra

      Pamplona, España

    2. [2] Universidad de La Rioja

      Universidad de La Rioja

      Logroño, España

    3. [3] Charles University in Prague

      Charles University in Prague

      Chequia

    4. [4] Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67, Praha 1, Czech Republic
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 73, Fasc. 3, 2022, págs. 337-357
  • Idioma: inglés
  • DOI: 10.1007/s13348-021-00322-9
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Our aim in this article is to contribute to the theory of Lipschitz free p-spaces for 0

  • Referencias bibliográficas
    • Albiac, F., Ansorena, J.L., Berná, P.M., Wojtaszczyk, P.: Greedy approximation for biorthogonal systems in quasi-banach spaces. Dissertationes...
    • Albiac, F., Ansorena, J.L., Cúth, M., Doucha, M.: Lipschitz free spaces isomorphic to their infinite sums and geometric applications. Trans....
    • Albiac, F., Ansorena, J.L., Cúth, M., Doucha, M.: Embeddability of \ell _p and bases in Lipschitz free p-spaces for 0 < p ≤ 1. J. Funct....
    • Albiac, F., Ansorena, J.L., Cúth, M., Doucha, M.: Lipschitz free p-spaces for 0 < p < 1. Israel J. Math. 240(1), 65–98 (2020)
    • Albiac, F., Ansorena, J.L., Wojtaszczyk, P.: On certain subspaces of \ell _p for 0 < p < 1 and their applications to conditional quasi-greedy...
    • Albiac, F., Kalton, N.J.: Lipschitz structure of quasi-Banach spaces. Israel J. Math. 170, 317–335 (2009)
    • Albiac, F., Kalton, N.J.: Topics in Banach Space Theory. Graduate Texts in Mathematics, vol. 233, 2nd edn. Springer, Cham (2016)
    • Ambrosio, L., Puglisi, D.: Linear extension operators between spaces of Lipschitz maps and optimal transport. J. Reine Angew. Math. 764, 1–21...
    • Casazza, P.G.: Approximation Properties. Handbook of the Geometry of Banach Spaces, vol. 2, pp. 271–316. North-Holland, Amsterdam (2001)
    • Cúth, M., Doucha, M.: Lipschitz-free spaces over ultrametric spaces. Mediterr. J. Math. 13(4), 1893–1906 (2016)
    • Dalet, A.: Free spaces over countable compact metric spaces. Proc. Am. Math. Soc. 143(8), 3537–3546 (2015)
    • Dalet, A.: Free spaces over some proper metric spaces. Mediterr. J. Math. 12(3), 973–986 (2015)
    • Doucha, M., Kaufmann, P.L.: Approximation properties in Lipschitz-free spaces over groups. arXiv e-prints arXiv:2005.09785 (2020)
    • Fonf, V.P., Wojtaszczyk, P.: Properties of the Holmes space. Topol. Appl. 155(14), 1627–1633 (2008)
    • Godefroy, G., Kalton, N.J.: Lipschitz-free Banach spaces. Studia Math. 159(1), 121–141 (2003)
    • Godefroy, G.: Extensions of Lipschitz functions and Grothendieck’s bounded approximation property. North-West. Eur. J. Math. 1, 1–6 (2015)
    • Godefroy, Gilles: A survey on Lipschitz-free Banach spaces. Comment. Math. 55(2), 89–118 (2015)
    • Godefroy, G., Ozawa, N.: Free Banach spaces and the approximation properties. Proc. Am. Math. Soc. 142(5), 1681–1687 (2014)
    • Hájek, P., Novotný, M.: Some remarks on the structure of Lipschitz-free spaces. Bull. Belg. Math. Soc. Simon Stevin 24(2), 283–304 (2017)
    • Hájek, P., Pernecká, E.: On Schauder bases in Lipschitz-free spaces. J. Math. Anal. Appl. 416(2), 629–646 (2014)
    • Kalton, N.J.: Locally complemented subspaces and 0
    • Kalton, NJ.: Banach envelopes of nonlocally convex spaces. Can. J. Math. 38(1), 65–86 (1986)
    • Lancien, G., Pernecká, E.: Approximation properties and Schauder decompositions in Lipschitz-free spaces. J. Funct. Anal. 264(10), 2323–2334...
    • Lindenstrauss, J.: Extension of compact operators. Mem. Am. Math. Soc. 48, 112 (1964)
    • Naor, A., Schechtman, G.: Planar earthmover is not in L_1. SIAM J. Comput. 37(3), 804–826 (2007)
    • Pernecká, E., Smith, R.J.: The metric approximation property and Lipschitz-free spaces over subsets of {\mathbb{R}}^N. J. Approx. Theory 199,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno