Ir al contenido

Documat


Aα and Lα-spectral properties of spider graphs

  • Brondani, Andre Ebling [1] ; França, Francisca Andrea Macedo [1] ; Oliveira, Carla Silva [2]
    1. [1] Universidade Federal Fluminense

      Universidade Federal Fluminense

      Brasil

    2. [2] Escola Nacional de Ciências Estatísticas.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 41, Nº. 4, 2022, págs. 965-982
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-5428
  • Enlaces
  • Resumen
    • Let G be a graph with adjacency matrix A(G) and let D(G) be the diagonal matrix of the degrees of G. For every real α ∈ [0, 1], Nikiforov [21] and Wang et al. [26] defined the matrices Aα(G) and Lα(G), respectively, as Aα(G) = αD(G)+(1−α)A(G) and Lα(G) = αD(G)+(α − 1)A(G). In this paper, we obtain some relationships between the eigenvalues of these matrices for some families of graphs, a part of the Aα and Lα-spectrum of the spider graphs, and we display the Aα and Lα-characteristic polynomials when their set of vertices can be partitioned into subsets that induce regular subgraphs. Moreover, we determine some subfamilies of spider graphs that are cospectral with respect to these matrices.

  • Referencias bibliográficas
    • N. M. M. Abreu, “Old and new results on algebraic connectivity of graphs”, Linear Algebra and its Applications, vol. 423, no. 1, pp. 53-73,...
    • A. E. Brondani, C. S. Oliveira, F. A. M. França and L. de Lima, “Aα-Spectrum of a Firefly Graph”, Electronic Notes in Theoretical Computer...
    • A. E. Brouwer and W. H. Haemers, Spectra of Graphs. New York: Springer, 2012.
    • M. Cámara and W. H. Haemers, “Spectral characterizations of almost complete graphs”, Discrete Applied Mathematics, vol. 176, pp. 19-23, 2014....
    • D. G. Corneil, H. Lerchs and L. S. Burlingham, “Complement reducible graphs”, Discrete Applied Mathematics, vol. 3, no. 3, pp. 163-174, 1981....
    • D. M. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra. Cambridge: Cambridge University Press, 2010.
    • D. M. Cvetković, “Graphs and their spectra”, Publikacije Elektrotehnickog Fakulteta Univerzitet Beograd, Serija Matematika, vol. 3, pp. 1-50,...
    • K. Ch. Das and M. Liu, “Complete Split graph determined by its (singless) Laplacian spectrum”, Discrete Applied Mathematics, vol. 205, pp....
    • F. Goldberg, S. Kirkland, A. Varghese and A. Vijayakumar, “On split graphs with four distinct eigenvalues”, Discrete Applied Mathematics,...
    • H. J. Finck, “Vollstandiges Produkt, chromatische Zahl und characteristisches Polynom regulärer Graphen II”, Wissenschaftliche Zeitschrift...
    • M. Ghorbani and N. Azimi, “Characterization of split graphs with at most four distinct eigenvalues”, Discrete Applied Mathematics, vol. 184,...
    • Hs. H. Günthard and H. Primas, “Zusammenhang von Graph theorie and MO-Theotie von Molekeln mit Systemen konjugierter Bindungen”, Helvetica...
    • W. H. Haemers, “Cospectral pairs of regular graphs with different connectivity”, Discussiones Mathematicae Graph Theory, vol. 40, no. 2, pp....
    • M. Haythorpe, A. Newcombe, “Constructing families of cospectral regular graphs”, Combinatorics, Probability and Computing, vol. 29, no. 5,...
    • C. T. Hoàng, Perfect graph, Thesis Ph.D. Canada: McGill University, Montreal, 1985.
    • B. Jamison and S. Olariu, “A tree representation for P4-sparse graphs”, Discrete Applied Mathematics, vol. 35, no. 2, pp. 115-129, 1992. https://doi.org/10.1016/0166-218x(92)90036-a
    • H. Q. Lin and J. L. Shu, “On the signless Laplacian index of cacti with a given number of pendant vertices”, Linear Algebra and its Applications,...
    • L. Mao, S. M Cioaba and W. Wang, “Spectral characterizations of the complete graph removing a path of small length”, Discrete Applied Mathematics,...
    • R. Medina, C. Noyer and O. Raynaud, “Twins Vertices in Hypergraphs”, Electronic Notes in Discrete Mathematics, vol. 27, pp. 87-89, 2006. https://doi.org/10.1016/j.endm.2006.08.069
    • H. Nagarajan, S. Rathinam and S. Darbha, “On maximizing algebraic connectivity of networks for various engineering applications”, European...
    • V. Nikiforov, “Merging the A- and Q-Spectral Theories”, Applicable Analysis and Discrete Mathematics, vol. 11, no. 1, pp. 81-107, 2017. https://doi.org/10.2298/aadm1701081n
    • A. Seress, “Large Families of Cospectral Graphs”, Designs, Codes and Cryptography, vol. 21, pp. 205-208, 2000. https://doi.org/10.1023/A:1008352030960
    • W. So, “Commutativity and spectra of Hermitian matrices”, Linear Algebra and its Applications, vol. 212-213, pp. 121-129, 1994. https://doi.org/10.1016/0024-3795(94)90399-9
    • A. Sorokin, R. Murphey, My T. Thai and P. M. Pardalos, Dynamics of Information Systems Mathematical Foundations. New York: Springer, 2012.
    • E. R. van Dam and W. H. Haemers, “Which graphs are determined by their spectrum?”, Linear Algebra and its Applications, vol. 373, no. 1, pp....
    • S. Wang and D. Wong, F. Tian, “Bounds for the largest and the smallest Aα eigenvalues of a graph in terms of vertex degrees”, Linear Algebra...
    • P. Wei and D. Sun, “Weighted Algebraic Connectivity: An Application to Airport Transportation Network”, Proceedings of the 18th World Congress...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno