Ir al contenido

Documat


Uniqueness of fixed point for sum of operators in ordered Banach spaces and application

  • Benmezai, Abdelhamid [1]
    1. [1] National High School of Mathematics.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 41, Nº. 4, 2022, págs. 949-964
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-5407
  • Enlaces
  • Resumen
    • In this article, we are concerned by existence and uniqueness of a fixed point for the sum of two operators A and B, defined on a closed convex subset of an ordered Banach space, where the order is induced by a normal and minihedral cone. In such a structure, an absolute value function is generated by the order and this provide the ability to introduce new versions of the concepts of lipschitzian and expansive mappings. Therefore we prove that if A is expansive and B is contractive, then the sum A + B has a unique fixed point.

  • Referencias bibliográficas
    • R. P. Agarwal, D. O’Regan and P. J. Y. Wong, Positive solutions of differential, difference and Integral equations. Dordrecht: Kluwer Academic...
    • R. P. Agarwal, D. O'Regan, and M.-A. Taoudi, “Browder-Krasnoselskii-type fixed point theorems in Banach spaces”, Fixed Point Theory and...
    • H. K. Awad and M. A. Darwish, “On Erdélyi-Kober cubic fractional integral equation of Urysohn-Volterra type”, Differential Equations and control...
    • J. Banas and L. Olszowy, “On solutions of a quadratic Urysohn integral equation on an unbouded interval”, Dynamic Systems and Applications,...
    • A. Benmezaï, ”Krasnoselskii-type fixed point theorem in ordered Banach spaces and application to integral equations”, Advances in Pure and...
    • A. Benmezaïand N. Benkaci-Ali, “Krein-Rutman operators and a variant of Banach contraction principle in ordered Banach spaces”, Bulletin mathématique...
    • M. Berzig, S. Chandok and M. S. Khan, “Generalized Krasnoselskii fixed point theorem involving auxiliary functions in bimetric spaces and...
    • L. W. Busbridge, The Mathematics of Radiative Transfer, Cambridge: Univ. Press, Cambridge, 1960.
    • B. Cahlon and B. Eskin, “Existence theorems for an integral equation of the Chandrasekhar H-equation with perturbation”, Journal of Mathematical...
    • K. M. Case and P. F. Zweigel, Linear Transport Theory. Reading, MA: Addison-Wesley, 1967.
    • G. Darbo, “Punti uniti in trasformazioni a codomio non compatto”, Rendiconti del Seminario Matematico della Università di Padova, vol. 24,...
    • M. A. Darwish, “On a perturbed functional integral equation of Urysohn type”, Applied Mathematics and Computation, vol. 218, no. 17, pp. 8800–8805,...
    • K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, 1985.
    • B. C. Dhage, “Some variants of two basic hybrid fixed point theorems of Krasnoselskii with applications”, Nonlinear Studies, vol. 25, pp....
    • J. Garcia-Falset, K. Latrach, E. Moreno-Gálvez, and M.-A. Taoudi, “Schaefer–Krasnoselskii fixed point theorems using a usual measure of weak...
    • J. Garcia-Falset and K. Latrach, “Krasnoselskii-type fixed-point theorems for weakly sequentially continuous mappings,” Bulletin of the London...
    • D. Guo and V. Lakshmikantaham, Nonlinear Problems in Abstract Cones. San Diego: Academic Press, 1988.
    • S. Hu, M. Khavanin, and W. A. N. Zhuang, “Integral equations arising in the kinetic theory of gases”, Applicable Analysis, vol. 34, no. 3-4,...
    • B. Ílhan and Í. Ozdemir, ̋Existence and asymptotic behavior of solutions for some nonlinear integral equations on an unbounded interval”,...
    • M. A. Krasnosel’skii, “Some problems of nonlinear analysis”, American Mathematical Society Translations, Series 2, vol. 2, no. 10, pp. 345-409,...
    • K. Kuratowski, “Sur les espaces completes”, Fundamenta Mathematicae, vol. 15, pp. 209-301, 1930. [On line]. Available: https://bit.ly/3zaewMo
    • W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces I. North-Holland publishing company, 1971.
    • M. A. Taoudi, “Krasnosel’skii type fixed point theorems under weak topology features”, Nonlinear Analysis: Theory, Methods and Applications,...
    • T. Xiang and S. G. Georgiev, “Noncompact-type Krasnoselskii fixed-point theorems and their applications”, Mathematical Methods in the Applied...
    • K. Yoshida, Functional Analysis. Springer-Verlag, 1980.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno