Ir al contenido

Documat


Sharp Lp-Lq estimate for the spectral projection associated with the twisted Laplacian

  • Jeong, Eunhee [1] ; Lee, Sanghyuk [2] Árbol académico ; Ryu, Jaehyeon [3]
    1. [1] National University

      National University

      Estados Unidos

    2. [2] Seoul National University

      Seoul National University

      Corea del Sur

    3. [3] Korea Institute for Advanced Study

      Korea Institute for Advanced Study

      Corea del Sur

  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 66, Nº 2, 2022, págs. 831-855
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this note we are concerned with estimates for the spectral projection operator Pµ associated with the twisted Laplacian L. We completely characterize the optimal bounds on the operator norm of Pµ from Lp to Lq when 1 ≤ p ≤ 2 ≤ q ≤ ∞. As an application, we obtain a uniform resolvent estimate for L.

  • Referencias bibliográficas
    • J.-G. Bak, Sharp estimates for the Bochner–Riesz operator of negative order in R2 , Proc. Amer. Math. Soc. 125(7) (1997), 1977–1986. DOI:...
    • L. Borjeson, Estimates for the Bochner–Riesz operator with negative index, Indiana Univ. Math. J. 35(2) (1986), 225–233. DOI: 10.1512/iumj.1986.35.35013
    • A. Carbery, A. Seeger, S. Wainger, and J. Wright, Classes of singular integral operators along variable lines, J. Geom. Anal. 9(4) (1999),...
    • J.-C. Cuenin, Sharp spectral estimates for the perturbed Landau Hamiltonian with Lp potentials, Integral Equations Operator Theory 88(1) (2017),...
    • L. Escauriaza and L. Vega, Carleman inequalities and the heat operator II, Indiana Univ. Math. J. 50(3) (2001), 1149–1169. DOI: 10.1512/iumj.2001.50.1937
    • C. L. Frenzen and R. Wong, Uniform asymptotic expansions of Laguerre polynomials, SIAM J. Math. Anal. 19(5) (1988), 1232–1248. DOI: 10.1137/0519087
    • L. Hormander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218. DOI: 10.1007/BF02391913.
    • E. Jeong, Y. Kwon, and S. Lee, Uniform Sobolev inequalities for second order non-elliptic differential operators, Adv. Math. 302 (2016), 323–350....
    • E. Jeong, S. Lee, and J. Ryu, Hermite spectral projection operator, Preprint (2021). arXiv:2006.11762
    • E. Jeong, S. Lee, and J. Ryu, Unique continuation for the heat operator with potentials in weak spaces, Preprint (2021). arXiv:2109.10564
    • M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120(5) (1998), 955–980. DOI: 10.1353/ajm.1998.0039
    • C. E. Kenig, A. Ruiz, and C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential...
    • H. Koch and F. Ricci, Spectral projections for the twisted Laplacian, Studia Math. 180(2) (2007), 103–110. DOI: 10.4064/sm180-2-1
    • H. Koch and D. Tataru, Carleman estimates and unique continuation for second order parabolic equations with nonsmooth coefficients, Comm....
    • B. Muckenhoupt, Mean convergence of Hermite and Laguerre series. I, II, Trans. Amer. Math. Soc. 147 (1970), 419–431. DOI: 10.1090/s0002-9947-1970-99933-9;...
    • A. Nowak and K. Stempak, Potential operators and Laplace type multipliers associated with the twisted Laplacian, Acta Math. Sci. Ser. B (Engl....
    • F. W. Olver “Asymptotics and Special Functions”, Reprint of the 1974 original, AKP Classics, A K Peters, Ltd., Wellesley, MA, 1997. DOI: 10.1201/9781439864548
    • W.-Y. Qiu and R. Wong, Global asymptotic expansions of the Laguerre polynomials—a Riemann–Hilbert approach, Numer. Algorithms 49(1-4) (2008),...
    • P. K. Ratnakumar, R. Rawat, and S. Thangavelu, A restriction theorem for the Heisenberg motion group, Studia Math. 126(1) (1997), 1–12
    • E. M. Stein, “Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals”, With the assistance of Timothy S. Murphy,...
    • K. Stempak and J. Zienkiewicz, Twisted convolution and Riesz means, J. Anal. Math. 76 (1998), 93–107. DOI: 10.1007/BF02786931
    • S. Thangavelu, Weyl multipliers, Bochner–Riesz means and special Hermite expansions, Ark. Mat. 29(1-2) (1991), 307–321. DOI: 10.1007/BF02384344
    • S. Thangavelu, “Lectures on Hermite and Laguerre Expansions”, With a preface by Robert S. Strichartz, Mathematical Notes 42, Princeton University...
    • S. Thangavelu, Hermite and special Hermite expansions revisited, Duke Math. J. 94(2) (1998), 257–278. DOI: 10.1215/S0012-7094-98-09413-3
    • S. Thangavelu, Poisson transform for the Heisenberg group and eigenfunctions of the sublaplacian, Math. Ann. 335(4) (2006), 879–899. DOI:...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno