Ir al contenido

Documat


Quasiconformal maps with thin dilatations

  • Bishop, Christopher J. [1]
    1. [1] Stony Brook University

      Stony Brook University

      Town of Brookhaven, Estados Unidos

  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 66, Nº 2, 2022, págs. 715-727
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We give an estimate that quantifies the fact that a normalized quasiconformal map whose dilatation is non-zero only on a set of small area approximates the identity uniformly on the whole plane. The precise statement is motivated by applications of the author’s quasiconformal folding method for constructing entire functions; in particular an application to constructing transcendental wandering domains given by Fagella, Godillon, and Jarque.

  • Referencias bibliográficas
    • L. V. Ahlfors, “Lectures on Quasiconformal Mappings”, Second edition, With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and...
    • S. Albrecht and C. J. Bishop, Speiser class Julia sets with dimension near one, J. Anal. Math. 141(1) (2020), 49–98. DOI: 10.1007/s11854-020-0128-1
    • C. J. Bishop, Constructing entire functions by quasiconformal folding, Acta Math. 214(1) (2015), 1–60. DOI: 10.1007/s11511-015-0122-0
    • C. J. Bishop and K. Lazebnik, Prescribing the postsingular dynamics of meromorphic functions, Math. Ann. 375(3-4) (2019), 1761–1782. DOI:...
    • C. J. Bishop and L. Rempe, Non-compact Riemann surfaces are equilaterally triangulable, Preprint (2021). arXiv:2103.16702v2
    • E. M. Dyn’kin, Smoothness of a quasiconformal mapping at a point (Russian), Algebra i Analiz 9(3) (1997), 205–210; translation in St. Petersburg...
    • N. Fagella, S. Godillon, and X. Jarque, Wandering domains for composition of entire functions, J. Math. Anal. Appl. 429(1) (2015), 478–496....
    • N. Fagella, X. Jarque, and K. Lazebnik, Univalent wandering domains in the Eremenko–Lyubich class, J. Anal. Math. 139(1) (2019), 369–395....
    • A. A. Goldberg and I. V. Ostrovskii, “Value Distribution of Meromorphic Functions”, Translated from the 1970 Russian original by Mikhail Ostrovskii,...
    • K. Lazebnik, Several constructions in the Eremenko–Lyubich class, J. Math. Anal. Appl. 448(1) (2017), 611–632. DOI: 10.1016/j.jmaa.2016.11.007
    • J. W. Osborne and D. J. Sixsmith, On the set where the iterates of an entire function are neither escaping nor bounded, Ann. Acad. Sci. Fenn....
    • L. Rempe-Gillen, Arc-like continua, Julia sets of entire functions, and Eremenko’s Conjecture, Preprint (2016). arXiv:1610.06278.
    • O. Teichmuller ¨ , Eine Umkehrung des zweiten Hauptsatzes der Wertverteilungslehre, Deutsche Math. 2 (1937), 96–107.
    • H. Wittich, Zum Beweis eines Satzes ¨uber quasikonforme Abbildungen, Math. Z. 51 (1948), 278–288. DOI: 10.1007/BF01181593
    • Y. Zhang and G. Zhang, Constructing entire functions with non-locally connected Julia set by quasiconformal surgery, Sci. China Math. 61(9)...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno