Ir al contenido

Documat


Reverse Faber-Krahn inequality for a truncated Laplacian operator

  • Parini, Enea [1] ; Rossi, Julio D. [2] ; Salort, Ariel [2]
    1. [1] Aix-Marseille University

      Aix-Marseille University

      Arrondissement de Marseille, Francia

    2. [2] Universidad de Buenos Aires

      Universidad de Buenos Aires

      Argentina

  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 66, Nº 2, 2022, págs. 441-455
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper we prove a reverse Faber–Krahn inequality for the principal eigenvalue µ1(Ω) of the fully nonlinear eigenvalue problem (−λN (D2u) = µu in Ω,u = 0 on ∂Ω.Here λN (D2u) stands for the largest eigenvalue of the Hessian matrix of u. More precisely, we prove that, for an open, bounded, convex domain Ω ⊂ RN , the inequality µ1(Ω) ≤π2[diam(Ω)]2= µ1(Bdiam(Ω)/2), where diam(Ω) is the diameter of Ω, holds true. The inequality actually implies a stronger result, namely, the maximality of the ball under a diameter constraint. Furthermore, we discuss the minimization of µ1(Ω) under different kinds of constraints.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno