Ir al contenido

Documat


Integrality and cuspidality of pullbacks of nearly holomorphic Siegel Eisenstein series

  • Autores: Ameya Pitale, Abhishek Saha, Ralf Schmidt
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 66, Nº 1, 2022, págs. 405-434
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We study nearly holomorphic Siegel Eisenstein series of general levels and characters on H2n, the Siegel upper half space of degree 2n. We prove that the Fourier coefficients of these Eisenstein series (once suitably normalized) lie in the ring of integers of Qp for all sufficiently large primes p. We also prove that the pullbacks of these Eisenstein series to Hn × Hn are cuspidal under certain assumptions.

  • Referencias bibliográficas
    • M. Agarwal and J. Brown, On the Bloch–Kato conjecture for elliptic modular forms of square-free level, Math. Z. 276 (2014), 889–924. DOI:...
    • M. Agarwal and K. Klosin, Yoshida lifts and the Bloch–Kato conjecture for the convolution L-function, J. Number Theory 133(8) (2013), 2496–2537....
    • T. Berger and K. Klosin, Deformations of Saito–Kurokawa type and the Paramodular Conjecture, Amer. J. Math. 142(6) (2020), 1821–1875. DOI:...
    • B. C. Berndt, R. J. Evans, and K. S. Williams, “Gauss and Jacobi Sums”, Wiley-Interscience and Canadian Mathematical Society Series of Monographs...
    • S. Böcherer , Über die Fourierkoeffizienten der Siegelschen Eisensteinreihen, Manuscripta Math. 45 (1984), 273–288. DOI: 10.1007/BF01158040.
    • S. Böcherer, Über die Funktionalgleichungen automorpher L-Funktionen zur Siegelschen Modulgruppe, J. Reine Angew. Math. 362 (1985), 146–168.
    • S. Böcherer, N. Dummigan, and R. Schulze-Pillot, Yoshida lifts and Selmer groups, J. Math. Soc. Japan 64(4) (2012), 1353–1405. DOI: 10.2969/jmsj/06441353.
    • S. Böcherer and C.-G. Schmidt, p-adic measures attached to Siegel modular forms, Ann. Inst. Fourier (Grenoble) 50(5) (2000) 1375–1443. DOI:...
    • J. Brown, Saito–Kurokawa lifts and applications to the Bloch–Kato conjecture, Compos. Math. 143(2) (2007), 290–322. DOI: 10.1112/S0010437X06002466.
    • J. Brown, On the cuspidality of pullbacks of Siegel Eisenstein series and applications to the Bloch–Kato conjecture, Int. Math. Res. Not....
    • G. Faltings and C.-L. Chai, “Degeneration of Abelian Varieties”, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of...
    • P. Feit, “Poles and Residues of Eisenstein Series for Symplectic and Unitary Groups”, Memoirs of the American Mathematical Society 346, American...
    • P. B. Garrett, Pullbacks of Eisenstein series; applications, in: “Automorphic Forms of Several Variables” (Katata, 1983), Progr. Math. 46,...
    • P. B. Garrett, On the arithmetic of Siegel–Hilbert cuspforms: Petersson inner products and Fourier coefficients, Invent. Math. 107 (1992),...
    • S. Gelbart, Y. Piatetski-Shapiro, and S. Rallis, “Explicit Constructions of Automorphic L-Functions”, Lecture Notes in Mathematics 1254, Springer,...
    • T. Ichikawa, Congruences between Siegel modular forms II, J. Number Theory 133(4) (2013), 1362–1371. DOI: 10.1016/j.jnt.2012.09.014.
    • H. Katsurada, Congruence of Siegel modular forms and special values of their standard zeta functions, Math. Z. 259 (2008), 97–111. DOI: 10.1007/s00209-007-0213-5.
    • H. Katsurada, Congruence between Duke–Imamoglu–Ikeda lifts and non-Duke– Imamoglu–Ikeda lifts, Comment. Math. Univ. St. Pauli 64(2) (2015),...
    • Y. Kitaoka, Dirichlet series in the theory of Siegel modular forms, Nagoya Math. J. 95 (1984), 73–84. DOI: 10.1017/S0027763000020973.
    • H. Klingen, “Introductory Lectures on Siegel Modular Forms”, Cambridge Studies in Advanced Mathematics 20, Cambridge University Press, Cambridge,1990....
    • R. P. Langlands, “On the Functional Equations Satisfied by Eisenstein Series”, Lecture Notes in Mathematics 544, Springer-Verlag, Berlin,...
    • H.-W. Von Leopoldt , Eine Verallgemeinerung der Bernoullischen Zahlen, Abh. Math. Semin. Univ. Hambg. 22 (1958), 131–140. DOI: 10.1007/BF02941946.
    • H. Maaß, “Siegel’s Modular Forms and Dirichlet Series”, Course Given at the University of Maryland, 1969–1970, Lecture Notes in Mathematics...
    • J. Neukirch, “Algebraic Number Theory”, Grundlehren der mathematischen Wissenschaften 322, Springer-Verlag, Berlin, Heidelberg, 1999. DOI:...
    • A. A. Panchishkin, The Maass–Shimura differential operators and congruences between arithmetical Siegel modular forms, Mosc. Math. J. 5(4)...
    • I. Piatetski-Shapiro and S. Rallis, L-functions of automorphic forms on simple classical groups, in: “Modular Forms” (Durham, 1983), Ellis...
    • A. Pitale, A. Saha, and R. Schmidt, On the standard L-function for GSp2n × GL1 and algebraicity of symmetric fourth L-values for GL2, Ann....
    • A. Pitale, A. Saha, and R. Schmidt, Lowest weight modules of Sp4 (R) and nearly holomorphic Siegel modular forms, Kyoto J. Math. Advance Publication...
    • G. Shimura, Arithmetic of differential operators on symmetric domains, Duke Math. J. 48(4) (1981), 813–843. DOI: 10.1215/S0012-7094-81-04845-6.
    • G. Shimura, Confluent hypergeometric functions on tube domains, Math. Ann. 260 (1982), 269–302. DOI: 10.1007/BF01461465.
    • G. Shimura, On Eisenstein series, Duke Math. J. 50(2) (1983), 417–476. DOI: 10.1215/S0012-7094-83-05019-6.
    • G. Shimura, Nearly holomorphic functions on hermitian symmetric spaces, Math. Ann. 278 (1987), 1–28. DOI: 10.1007/BF01458058.
    • G. Shimura, “Euler Products and Eisenstein Series”, CBMS Regional Conference Series in Mathematics 93, American Mathematical Society, Providence,...
    • G. Shimura, “Arithmeticity in the Theory of Automorphic Forms”, Mathematical Surveys and Monographs 82, American Mathematical Society, Providence,RI,...
    • C. Skinner and E. Urban, The Iwasawa Main Conjectures for GL2, Invent. Math. 195 (2014), 1–277. DOI: 10.1007/s00222-013-0448-1.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno