Ir al contenido

Documat


A small closed convex projective 4-manifold via Dehn filling

  • Autores: Gye-Seon Lee, Ludovic Marquis, Stefano Riolo
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 66, Nº 1, 2022, págs. 369-403
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In order to obtain a closed orientable convex projective 4-manifold with small positive Euler characteristic, we build an explicit example of convex projective Dehn filling of a cusped hyperbolic 4-manifold through a continuous path of projective cone-manifolds

  • Referencias bibliográficas
    • I. Agol, Bounds on exceptional Dehn filling II, Geom. Topol. 14(4) (2010), 1921–1940. DOI: 10.2140/gt.2010.14.1921.
    • M. T. Anderson, Dehn filling and Einstein metrics in higher dimensions, J. Differential Geom. 73(2) (2006), 219–261. DOI: 10.4310/jdg/1146169911.
    • R. H. Bamler, Construction of Einstein metrics by generalized Dehn filling, J. Eur. Math. Soc. (JEMS) 14(3) (2012), 887–909. DOI: 10.4171/JEMS/321.
    • S. A. Ballas, J. Danciger, and G.-S. Lee, Convex projective structures on nonhyperbolic three-manifolds, Geom. Topol. 22(3) (2018), 1593–1646....
    • T. Barbot, F. Bonsante, and J.-M. Schlenker, Collisions of particles in locally AdS spacetimes I. Local description and global examples, Comm....
    • Y. Benoist, Convexes divisibles II, Duke Math. J. 120(1) (2003), 97–120. DOI: 10.1215/S0012-7094-03-12014-1.
    • Y. Benoist, Convexes divisibles I, in: “Algebraic Groups and Arithmetic”, Tata Inst. Fund. Res., Mumbai, 2004, pp. 339–374.
    • Y. Benoist, Convexes divisibles IV. Structure du bord en dimension 3, Invent. Math. 164(2) (2006), 249–278. DOI: 10.1007/s00222-005-0478-4.
    • Y. Benoist, Convexes hyperboliques et quasiisom´etries, Geom. Dedicata 122 (2006), 109–134. DOI: 10.1007/s10711-006-9066-z.
    • Y. Benoist, A survey on divisible convex sets, in: “Geometry, Analysis and Topology of Discrete Groups”, Adv. Lect. Math. (ALM) 6, Int. Press,...
    • N. Bergeron and T. Gelander, A note on local rigidity, Geom. Dedicata 107 (2004), 111–131. DOI: 10.1023/B:GEOM.0000049122.75284.06.
    • S. A. Bleiler and C. D. Hodgson, Spherical space forms and Dehn filling, Topology 35(3) (1996), 809–833. DOI: 10.1016/0040-9383(95)00040-2.
    • M. Boileau, B. Leeb, and J. Porti, Geometrization of 3-dimensional orbifolds, Ann. of Math. (2) 162(1) (2005), 195–290. DOI: 10.4007/annals.2005.162.195.
    • N. Bourbaki, “Groupes et alg`ebres de Lie”, Chapitres 4, 5 et 6, Elements de Mathematique, Masson, Paris, 1981.
    • B. H. Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22(3) (2012), 1250016, 66 pp. DOI: 10.1142/S0218196712500166.
    • M. R. Bridson and A. Haefliger, “Metric Spaces of Non-Positive Curvature”, Grundlehren der mathematischen Wissenschaften 319, Springer-Verlag,...
    • V. M. Buchstaber and T. E. Panov, “Toric Topology”, Mathematical Surveys and Monographs 204, American Mathematical Society, Providence, RI,...
    • P.-E. Caprace, Buildings with isolated subspaces and relatively hyperbolic Coxeter groups, Innov. Incidence Geom. 10 (2009), 15–31. DOI: 10.2140/iig.2009.10.15.
    • P.-E. Caprace, Erratum to “Buildings with isolated subspaces and relatively hyperbolic Coxeter groups”, Innov. Incidence Geom. 14 (2015),...
    • S. Choi, G.-S. Lee, and L. Marquis, Deformations of convex real projective manifolds and orbifolds, in: “Handbook of Group Actions”, Vol....
    • S. Choi, G.-S. Lee, and L. Marquis, Convex projective generalized Dehn filling, Ann. Sci. Ec. Norm. Sup´er. (4) ´ 53(1) (2020), 217–266. DOI:...
    • S. Choi, G.-S. Lee, and L. Marquis, Deformation spaces of Coxeter truncation polytopes, Preprint (2021). arXiv:2108.11689.
    • M. Conder and C. Maclachlan, Compact hyperbolic 4-manifolds of small volume, Proc. Amer. Math. Soc. 133(8) (2005), 2469–2476. DOI: 10.1090/S0002-9939-05-07634-3.
    • D. Cooper, D. D. Hodgson, and S. P. Kerckhoff, “Three-dimensional Orbifolds and Cone-Manifolds”, With a postface by Sadayoshi Kojima, MSJ...
    • D. Cooper, D. D. Long, and M. B. Thistlethwaite, Flexing closed hyperbolic manifolds, Geom. Topol. 11 (2007), 2413–2440. DOI: 10.2140/gt.2007.11.2413.
    • H. S. M. Coxeter, “Regular Polytopes”, Third edition, Dover Publications, Inc., New York, 1973.
    • J. Danciger, Geometric Transitions: From Hyperbolic to Ads Geometry, Thesis (Ph.D.)-Stanford University (2011). Available on ProQuest.
    • J. Danciger, A geometric transition from hyperbolic to anti-de Sitter geometry, Geom. Topol. 17(5) (2013), 3077–3134. DOI: 10.2140/gt.2013.17.3077.
    • J. Danciger, F. Gueritaud, and F. Kassel ´ , Convex cocompact actions in real projective geometry, Preprint (2017). arXiv:1704.08711.
    • J. Danciger, F. Gueritaud, and F. Kassel ´ , Convex cocompactness in pseudoRiemannian hyperbolic spaces, Geom. Dedicata 192 (2018), 87–126....
    • B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8(5) (1998),810–840. DOI: 10.1007/s000390050075.
    • K. Fujiwara and J. F. Manning, CAT(0) and CAT(−1) fillings of hyperbolic manifolds, J. Differential Geom. 85(2) (2010), 229–269. DOI: 10.4310/jdg/1287580965.
    • K. Fujiwara and J. F. Manning, Simplicial volume and fillings of hyperbolic manifolds, Algebr. Geom. Topol. 11(4) (2011), 2237–2264. DOI:...
    • H. Garland and M. S. Raghunathan, Fundamental domains for lattices in (R-)rank 1 semisimple Lie groups, Ann. of Math. (2) 92(2) (1970), 279–326.DOI:...
    • W. M. Goldman, Geometric structures on manifolds, University of Maryland, Lecture Notes, 2018.
    • D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87(4) (1965), 840–856. DOI: 10.2307/2373248.
    • D. Groves and J. F. Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008), 317–429. DOI: 10.1007/s11856-008-1070-6.
    • O. Guichard and A. Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190(2) (2012), 357–438. DOI:...
    • G. C. Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol. 10(3) (2010), 1807–1856. DOI:...
    • M. Kapovich, Convex projective structures on Gromov–Thurston manifolds, Geom. Topol. 11 (2007), 1777–1830. DOI: 10.2140/gt.2007.11.1777.
    • A. Kolpakov, A. W. Reid, and S. Riolo, Many cusped hyperbolic 3-manifolds do not bound geometrically, Proc. Amer. Math. Soc. 148(5) (2020),...
    • A. Kolpakov and L. Slavich, Symmetries of hyperbolic 4-manifolds, Int. Math. Res. Not. IMRN 2016(9) (2016), 2677–2716. DOI: 10.1093/imrn/rnv210.
    • F. Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165(1) (2006), 51–114. DOI: 10.1007/s00222-005-0487-3.
    • M. Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140(2) (2000),243–282. DOI: 10.1007/s002220000047.
    • G.-S. Lee, L. Marquis, S. Riolo, and T. Yukita, Dehn filling all the cusps of a hyperbolic 4-manifold, In preparation.
    • C. Long, Small volume closed hyperbolic 4-manifolds, Bull. Lond. Math. Soc. 40(5) (2008), 913–916. DOI: 10.1112/blms/bdn077.
    • L. Marquis, Espace des modules de certains poly`edres projectifs miroirs, Geom. Dedicata 147 (2010), 47–86. DOI: 10.1007/s10711-009-9438-2.
    • L. Marquis, Around groups in Hilbert geometry, in: “Handbook of Hilbert Geometry”, IRMA Lect. Math. Theor. Phys. 22, Eur. Math. Soc., Z¨urich,...
    • L. Marquis, Coxeter group in Hilbert geometry, Groups Geom. Dyn. 11(3) (2017), 819–877. DOI: 10.4171/GGD/416.
    • B. Martelli, “An Introduction to Geometric Topology”, CreateSpace Independent Publishing Platform, 2016.
    • B. Martelli, Hyperbolic four-manifolds, in: “Handbook of Group Actions”,Vol. III, Adv. Lect. Math. (ALM) 40, Int. Press, Somerville, MA, 2018,...
    • B. Martelli and S. Riolo, Hyperbolic Dehn filling in dimension four, Geom. Topol. 22(3) (2018), 1647–1716. DOI: 10.2140/gt.2018.22.1647.
    • C. T. McMullen, The Gauss–Bonnet theorem for cone manifolds and volumes of moduli spaces, Amer. J. Math. 139(1) (2017), 261–291. DOI: 10.1353/ajm.2017.0005.
    • D. B. McReynolds, A. W. Reid, and M. Stover, Collisions at infinity in hyperbolic manifolds, Math. Proc. Cambridge Philos. Soc. 155(3) (2013),...
    • G. Moussong, Hyperbolic Coxeter groups, Thesis (Ph.D.)- The Ohio State University (1988).
    • D. V. Osin, Peripheral fillings of relatively hyperbolic groups, Invent. Math.167(2) (2007), 295–326. DOI: 10.1007/s00222-006-0012-3.
    • S. Riolo and A. Seppi, Geometric transition from hyperbolic to Anti-de Sitterstructures in dimension four, Preprint (2019). arXiv:1908.05112.
    • S. Riolo and L. Slavich, New hyperbolic 4-manifolds of low volume, Algebr. Geom. Topol. 19(5) (2019), 2653–2676. DOI: 10.2140/agt.2019.19.2653.
    • V. Schroeder, A cusp closing theorem, Proc. Amer. Math. Soc. 106(3) (1989), 797–802. DOI: 10.2307/2047438.
    • L. Slavich, The complement of the figure-eight knot geometrically bounds, Proc. Amer. Math. Soc. 145(3) (2017), 1275–1285. DOI: 10.1090/proc/13272.
    • W. Thurston, “The Geometry and Topology of Three-Manifolds”, Electronic version 1.1, March 2002. http://www.msri.org/publications/books/gt3m/.
    • W. P. Thurston, Shapes of polyhedra and triangulations of the sphere, in: “The Epstein Birthday Schrift”, Geom. Topol. Monogr. 1, Geom. Topol....
    • C. Vernicos, Introduction aux g´eom´etries de Hilbert, in: “Actes de Séminaire de théorie spectrale et géométrie”, Vol. 23, Ann´ee 2004–2005,...
    • J. Vey, Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 24 (1970), 641–665.
    • È. B. Vinberg, Discrete linear groups that are generated by reflections (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1072–1112.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno