Ir al contenido

Documat


Gelfand-type problems involving the 1-Laplacian operator

  • Autores: Alexis Molino Salas, Sergio Segura de León Árbol académico
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 66, Nº 1, 2022, págs. 269-304
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, the theory of Gelfand problems is adapted to the 1-Laplacian setting. Concretely, we deal with the following problem:

      −∆1u = λf(u) in Ω,u = 0 on ∂Ω, where Ω ⊂ RN (N ≥ 1) is a domain, λ ≥ 0, and f : [0, +∞[ → ]0, +∞[ is any continuous increasing and unbounded function with f(0) > 0.

      We prove the existence of a threshold λ∗ = h(Ω) f(0) (h(Ω) being the Cheeger constant of Ω) such that there exists no solution when λ > λ∗ and the trivial function is always a solution when λ ≤ λ∗. The radial case is analyzed in more detail, showing the existence of multiple (even singular) solutions as well as the behavior of solutions to problems involving the p-Laplacian as p tends to 1, which allows us to identify proper solutions  through an extra condition.

  • Referencias bibliográficas
    • B. Abdellaoui, A. Dall’Aglio, and S. Segura de Leon´ , Multiplicity of solutions to elliptic problems involving the 1-Laplacian with a critical...
    • A. Alvino, A limit case of the Sobolev inequality in Lorentz spaces, Rend. Accad. Sci. Fis. Mat. Napoli (4) 44 (1977), 105–112 (1978).
    • L. Ambrosio, N. Fusco, and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, The...
    • F. Andreu, C. Ballester, V. Caselles, and J. M. Mazón, Minimizing total variation flow, C. R. Acad. Sci. Paris Sér. I Math. 331(11) (2000),...
    • F. Andreu, C. Ballester, V. Caselles, and J. M. Mazón , The Dirichlet problem for the total variation flow, J. Funct. Anal. 180(2) (2001),...
    • G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl .(4) 135 (1983), 293–318....
    • D. Arcoya, J. Carmona, and P. J. Martínez-Aparicio, Gelfand type quasilinear elliptic problems with quadratic gradient terms, Ann. Inst. H....
    • J. Benedikt and P. Drábek, Asymptotics for the principal eigenvalue of the p-Laplacian on the ball as p approaches 1, Nonlinear Anal. 93 (2013),...
    • H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10(2) (1997), 443–469.
    • X. Cabré, Boundedness of stable solutions to semilinear elliptic equations: a survey, Adv. Nonlinear Stud. 17(2) (2017), 355–368. DOI: 10.1515/ans-2017-0008.
    • X. Cabré, A. Capella, and M. Sanchón, Regularity of radial minimizers of reaction equations involving the p-Laplacian, Calc. Var. Partial...
    • X. Cabré, A. Figalli, X. Ros-Oton, and J. Serra, Stable solutions to semilinear elliptic equations are smooth up to dimension 9, Acta Math....
    • X. Cabré and M. Sanchón, Semi-stable and extremal solutions of reaction equations involving the p-Laplacian, Commun. Pure Appl. Anal. 6(1)...
    • J. Carmona Tapia, A. Molino Salas, and J. D. Rossi, The Gelfand problem for the 1-homogeneous p-Laplacian, Adv. Nonlinear Anal. 8(1) (2019),...
    • S. Chandrasekhar, “An Introduction to the Study of Stellar Structure”, Dover Publications, Inc., New York, N. Y., 1957.
    • P. Clément, D. G. de Figueiredo, and E. Mitidieri, Quasilinear elliptic equations with critical exponents, Topol. Methods Nonlinear Anal....
    • M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems,...
    • L. Damascelli and B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations, J. Differential Equations...
    • F. Demengel, On some nonlinear partial differential equations involving the “1”-Laplacian and critical Sobolev exponent, ESAIM Control Optim....
    • L. C. Evans and R. F. Gariepy, “Measure Theory and Fine Properties of Functions”, Revised edition, Textbooks in Mathematics, CRC Press, Boca...
    • J. García Azorero and I. Peral Alonso, On an Emden–Fowler type equation, Nonlinear Anal. 18(11) (1992), 1085–1097. DOI: 10.1016/0362-546X(92)...
    • J. García Azorero, I. Peral Alonso, and J.-P. Puel, Quasilinear problems with exponential growth in the reaction term, Nonlinear Anal. 22(4)...
    • I. M. Gel’fand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl. (2) 29 (1963), 295–381.
    • R. A. Hunt, On L(p, q) spaces, Enseign. Math. (2) 12 (1966), 249–276.
    • J. Jacobsen, Global bifurcation problems associated with K-Hessian operators, Topol. Methods Nonlinear Anal. 14(1) (1999), 81–130. DOI: 10.12775/TMNA....
    • J. Jacobsen and K. Schmitt, The Liouville–Bratu–Gelfand problem for radial operators, J. Differential Equations 184(1) (2002), 283–298. DOI:...
    • D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1972/73), 241–269....
    • D. D. Joseph and E. M. Sparrow, Nonlinear diffusion induced by nonlinear sources, Quart. Appl. Math. 28 (1970), 327–342. DOI: 10.1090/qam/272272.
    • B. Kawohl and V. Fridman, Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant, Comment. Math....
    • H. B. Keller and D. S. Cohen, Some positone problems suggested by nonlinear heat generation, J. Math. Mech. 16 (1967), 1361–1376.
    • P. Korman, Infinitely many solutions for three classes of self-similar equations with p-Laplace operator: Gelfand, Joseph-Lundgren and MEMS...
    • G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12(11) (1988), 1203–1219. DOI: 10.1016/0362-546X(88)...
    • A. Mercaldo, J. D. Rossi, S. Segura de Leon, and C. Trombetti ´ , Behaviour of p-Laplacian problems with Neumann boundary conditions when...
    • A. Mercaldo, S. Segura de Leon, and C. Trombetti ´ , On the behaviour of the solutions to p-Laplacian equations as p goes to 1, Publ. Mat....
    • F. Mignot and J.-P. Puel, Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe, Comm. Partial Differential...
    • A. Molino, Gelfand type problem for singular quadratic quasilinear equations, NoDEA Nonlinear Differential Equations Appl. 23(5) (2016), Art....
    • M. Montenegro, Strong maximum principles for supersolutions of quasilinear elliptic equations, Nonlinear Anal. Ser. A: Theory Methods 37(4)...
    • F. Nedev, Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris S´er. I Math. 330(11) (2000), 997–1002....
    • X. Ros-Oton, Regularity for the fractional Gelfand problem up to dimension 7, J. Math. Anal. Appl. 419(1) (2014), 10–19. DOI: 10.1016/j.jmaa.2014.04.048.
    • L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms. Experimental mathematics: computational issues...
    • J. C. Sabina de Lis and S. Segura de Leon´ , The limit as p → 1 of the higher eigenvalues of the p-Laplacian operator ∆p, Indiana Univ. Math....
    • M. Sanchón, Boundedness of the extremal solution of some p-Laplacian problems, Nonlinear Anal. 67(1) (2007), 281–294. DOI: 10.1016/j.na.2006.05.010.
    • S. Villegas, Boundedness of extremal solutions in dimension 4, Adv. Math. 235 (2013), 126–133. DOI: 10.1016/j.aim.2012.11.015.
    • W. P. Ziemer, “Weakly Differentiable Functions”. Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics 120, Springer-Verlag,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno