Ir al contenido

Documat


ℓ-class groups of fields in Kummer towers

  • Autores: Jianing Li, Yi Ouyang, Yue Xu, Shenxing Zhang
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 66, Nº 1, 2022, págs. 235-267
  • Idioma: catalán
  • Títulos paralelos:
    • ℓ-class groups of fields in Kummer towers
  • Enlaces
  • Resumen
    • Let ℓ and b be prime numbers and Kn,m = Q(p1 n , ζ2`m). We study the `-class group of Kn,m in this paper. When ` = 2, we determine the structure of the 2-class group of Kn,m for all (n, m) ∈ Z 2 ≥0 in the case p ≡ 3, 5 mod 8, and for (n, m) = (n, 0), (n, 1), or (1, m) in the case p ≡ 7 mod 16, generalizing the results of Parry about the 2-divisibility of the class number of K2,0. We also obtain results about the `-class group of Kn,m when ` is odd and in particular when ` = 3. The main tools we use are class field theory, including Chevalley’s ambiguous class number formula and its generalization by Gras, and a stationary result about the `-class groups in the 2-dimensional Kummer tower {Kn,m}.

  • Referencias bibliográficas
    • F. Calegari and M. Emerton, On the ramification of Hecke algebras at Eisenstein primes, Invent. Math. 160(1) (2005), 97–144. DOI: 10.1007/s00222...
    • A. Fröhlich and M. J. Taylor , “Algebraic Number Theory”, Cambridge Studies in Advanced Mathematics 27, Cambridge University Press, Cambridge,...
    • T. Fukuda, Remarks on Zp-extensions of number fields, Proc. Japan Acad. Ser. A Math. Sci. 70(8) (1994), 264–266. DOI: 10.3792/pjaa.70.264.
    • F. Gerth, III, Ranks of 3-class groups of non-Galois cubic fields, Acta Arith. 30(4) (1976), 307–322. DOI: 10.4064/aa-30-4-307-322.
    • F. Gerth, III, On 3-class groups of certain pure cubic fields, Bull. Austral. Math. Soc. 72(3) (2005), 471–476. DOI: 10.1017/S0004972700035292.
    • G. Gras, Invariant generalized ideal classes—structure theorems for p-class groups in p-extensions, Proc. Indian Acad. Sci. Math. Sci. 127(1)...
    • R. Greenberg, “Topics in Iwasawa Theory”. https://sites.math.washington .edu/∼greenber/book.pdf.
    • T. Honda, Pure cubic fields whose class numbers are multiples of three, J. Number Theory 3(1) (1971), 7–12. DOI: 10.1016/0022-314X(71)90045-X.
    • K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257–258. DOI: 10.1007/BF03374563.
    • Y. Kida, On cyclotomic Z2-extensions of imaginary quadratic fields, Tohoku Math. J. (2) 31(1) (1979), 91–96. DOI: 10.2748/tmj/1178229880.
    • S. Lang, “Cyclotomic Fields I and II”, Combined second edition, With an appendix by Karl Rubin, Graduate Texts in Mathematics 121, Springer-Verlag,...
    • A. Lei, Estimating class numbers over metabelian extensions, Acta Arith. 180(4) (2017), 347–364. DOI: 10.4064/aa170216-27-4.
    • F. Lemmermeyer, Quadratic reciprocity in number fields (2005). http://www. fen.bilkent.edu.tr/∼franz/rl2/rlb12.pdf.
    • J. Li and Y. Xu, On class numbers of pure quartic fields, Ramanujan J. 56(1) (2021), 235–248. DOI: 10.1007/s11139-020-00253-2.
    • J. Li and C.-F. Yu, The Chevalley–Gras formula over global fields, J. Théor. Nombres Bordeaux 32(2) (2020), 525–543. DOI: 10.5802/jtnb.1133....
    • P. Monsky, A result of Lemmermeyer on class numbers. Preprint (2010). arXiv:1009.3990.
    • J. Neukirch, “Algebraic Number Theory”, Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by...
    • C. J. Parry, A genus theory for quartic fields, J. Reine Angew. Math. 314 (1980), 40–71. DOI: 10.1515/crll.1980.314.40.
    • L. C. Washington, “Introduction to Cyclotomic Fields”, Second edition, Graduate Texts in Mathematics 83, Springer-Verlag, New York, 1997....
    • H. Weber, Theorie der Abel’schen Zahlk¨orper, Acta Math. 8(1) (1886), 193–263. DOI: 10.1007/BF02417089.
    • Z. Zhang and Q. Yue, Fundamental units of real quadratic fields of odd class numb

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno