Ir al contenido

Documat


Natural families in evolution algebras

  • Autores: Nadia Boudi Árbol académico, Yolanda Cabrera Casado, Mercedes Siles Molina Árbol académico
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 66, Nº 1, 2022, págs. 159-181
  • Idioma: inglés
  • DOI: 10.5565/PUBLMAT6612206
  • Enlaces
  • Resumen
    • In this paper we introduce the notion of evolution rank and give a decomposition of an evolution algebra into its annihilator and extending evolution subspaces having evolution rank one. This decomposition can be used to prove that innondegenerate evolution algebras any family of natural and orthogonal vectors can be extended to a natural basis. The central results are the characterization of those families of orthogonal linearly independent vectors which can be extended to a natural basis.

      We also consider ideals in perfect evolution algebras and prove that they coincide with basic ideals.  Nilpotent elements of order three can be localized (in a perfect evolution algebra over a field in which every element is a square) by merely looking at the structure matrix: any vanishing principal minor provides one. Conversely, if a perfect evolution algebra over an arbitrary field has a nilpotent element of order three, then its structure matrix has a vanishing principal minor.

      We finish by considering the adjoint evolution algebra and relating its properties to the corresponding ones in the initial evolution algebra.

  • Referencias bibliográficas
    • Y. Cabrera Casado, Evolution algebras, Thesis (Ph.D.)-Universidad de M´alaga (2016). Available on http://hdl.handle.net/10630/14175.
    • Y. Cabrera Casado, M. Kanuni, and M. Siles Molina, Basic ideals in evolution algebras, Linear Algebra Appl. 570 (2019), 148–180. DOI: 10.1016/j.laa....
    • Y. Cabrera Casado, M. Siles Molina, and M. V. Velasco, Evolution algebras of arbitrary dimension and their decompositions, Linear Algebra...
    • Y. Cabrera Casado, M. Siles Molina, and M. V. Velasco, Classification of three-dimensional evolution algebras, Linear Algebra Appl. 524 (2017),...
    • L. M. Camacho, J. R. Gomez, B. A. Omirov, and R. M. Turdibaev ´ , Some properties of evolution algebras, Bull. Korean Math. Soc. 50(5) (2013),...
    • M. I. Cardoso Gonc¸alves, D. Gonc¸alves, D. Mart´ın Barquero, C. Mart´ın Gonzalez, and M. Siles Molina ´ , Squares and associative representations...
    • A. Elduque and A. Labra, Evolution algebras and graphs, J. Algebra Appl. 14(7) (2015), 1550103, 10 pp. DOI: 10.1142/S0219498815501030.
    • A. Elduque and A. Labra, On nilpotent evolution algebras, Linear Algebra Appl. 505 (2016), 11–31. DOI: 10.1016/j.laa.2016.04.025.
    • J. P. Tian, “Evolution Algebras and their Applications”, Lecture Notes in Mathematics 1921, Springer, Berlin, 2008. DOI: 10.1007/978-3-540-74284-5.
    • J. P. Tian, Invitation to research of new mathematics from biology: Evolution algebras, in: “Topics in Functional Analysis and Algebra”, Contemp....
    • J. P. Tian and P. Vojtechovsk ˇ y´, Mathematical concepts of evolution algebras in non-Mendelian genetics, Quasigroups Related Systems 14(1)...
    • K. A. Zhevlakov, A. M. Slin’ko, I. P. Shestakov, and A. I. Shirshov, “Rings That Are Nearly Associative”, Translated from the Russian by Harry...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno