Ir al contenido

Documat


Extremal solutions of an inequality concerning supports of permutation groups and punctured Hadamard codes

  • Autores: András Pongrácz
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 66, Nº 1, 2022, págs. 57-75
  • Idioma: catalán
  • Títulos paralelos:
    • Extremal solutions of an inequality concerning supports of permutation groups and punctured Hadamard codes
  • Enlaces
  • Resumen
    • If S is the degree of a permutation group and s is the maximum degree of its elements, then S ≤ 2s − 2. We show that this inequality is sharp for some permutation group if and only if s is a power of 2, and then there is exactly one such permutation group up to isomorphism. The unique example is an elementary Abelian 2-group that arises from a punctured Hadamard code. Then we discuss the solutions of S = 2s − 3 and S = 2s − 4

  • Referencias bibliográficas
    • O. Ahlman and V. Koponen, Limit laws and automorphism groups of random nonrigid structures, J. Log. Anal. 7 (2015), Paper 2, 1–53. DOI: 10.4115/jla....
    • S. Ball and A. Blokhuis, A bound for the maximum weight of a linear code, SIAM J. Discrete Math. 27(1) (2013), 575–583. DOI: 10.1137/120880100.
    • A. Betten, M. Braun, H. Fripertinger, A. Kerber, A. Kohnert, and A. Wassermann, “Error-Correcting Linear Codes”, Classification by Isometry...
    • A. Bonisoli, Every equidistant linear code is a sequence of dual Hamming codes, Ars Combin. 18 (1984), 181–186.
    • P. J. Cameron, On graphs with given automorphism group, European J. Combin. 1(2) (1980), 91–96. DOI: 10.1016/S0195-6698(80)80043-6.
    • K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory 61(11)...
    • P. Erdos and A. R ˝ enyi ´ , Asymmetric graphs, Acta Math. Acad. Sci. Hungar. 14 (1963), 295–315. DOI: 10.1007/BF01895716.
    • R. Fagin, The number of finite relational structures, Discrete Math. 19(1) (1977), 17–21. DOI: 10.1016/0012-365X(77)90116-9.
    • J. H. Griesmer, A bound for error-correcting codes, IBM J. Res. Develop. 4(5) (1960), 532–542. DOI: 10.1147/rd.45.0532.
    • V. Koponen, Typical automorphism groups of finite nonrigid structures, Arch. Math. Logic 54(5–6) (2015), 571–586. DOI: 10.1007/s00153-015-0428-9.
    • C. Li, S. Bae, and S. Yang, Some two-weight and three-weight linear codes, Adv. Math. Commun. 13(1) (2019), 195–211. DOI: 10.3934/amc.2019013.
    • C. Li, Q. Yue, and F.-W. Fu, A construction of several classes of two-weight and three-weight linear codes, Appl. Algebra Engrg. Comm. Comput....
    • M. W. Liebeck and A. Shalev, On fixed points of elements in primitive permutation groups, J. Algebra 421 (2015), 438–459. DOI: 10.1016/j.jalgebra.2014....
    • S. Ling and C. Xing, “Coding Theory. A First Course”, Cambridge University Press, Cambridge, 2004. DOI: 10.1017/CBO9780511755279.
    • M. Plotkin, Binary codes with specified minimum distance, IRE Trans. 6(4) (1960), 445–450. DOI: 10.1109/tit.1960.1057584.
    • A. Pongracz ´ , Binary linear codes with near-extremal maximum distance, SIAM J. Discrete Math. 34(4) (2020), 2300–2317. DOI: 10.1137/19M1288498.
    • C. Ronse, On permutation groups of prime power order, Math. Z. 173(3) (1980), 211–215. DOI: 10.1007/BF01159658.
    • R. Roth, “Introduction to Coding Theory”, Cambridge University Press, Cambridge, 2006. DOI: 10.1017/CBO9780511808968.
    • J. Saxl and A. Shalev, The fixity of permutation groups, J. Algebra 174(3) (1995), 1122–1140. DOI: 10.1006/jabr.1995.1171.
    • A. Shalev, On the fixity of linear groups, Proc. London Math. Soc. (3) 68(2) (1994), 265–293. DOI: 10.1112/plms/s3-68.2.265.
    • Z. Zhou, N. Li, C. Fan, and T. Helleseth, Linear codes with two or three weights from quadratic Bent functions, Des.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno