Ir al contenido

Documat


The thin obstacle problem

  • Autores: Xavier Fernandez Real
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 66, Nº 1, 2022, págs. 3-55
  • Idioma: catalán
  • Títulos paralelos:
    • The thin obstacle problem
  • Enlaces
  • Resumen
    • In this work we present a general introduction to the Signorini problem (or thin obstacle problem). It is a self-contained survey that aims to cover the main currently known results regarding the thin obstacle problem. We present the theory with some proofs, from the optimal regularity of solutions and classification of free boundary points to more recent results on the non-regular part of the free boundary and generic regularity.

  • Referencias bibliográficas
    • F. J. Almgren, Jr., “Almgren’s Big Regularity Paper”, Q-Valued Functions Minimizing Dirichlet’s Integral and the Regularity of Area-Minimizing...
    • J. Andersson, Optimal regularity for the Signorini problem and its free boundary, Invent. Math. 204(1) (2016), 1–82. DOI: 10.1007/s00222-015-0608-6.
    • I. Athanasopoulos and L. A. Caffarelli, Optimal regularity of lower dimensional obstacle problems, Zap. Nauchn. Sem. S.-Peterburg. Otdel....
    • I. Athanasopoulos, L. Caffarelli, and E. Milakis, On the regularity of the non-dynamic parabolic fractional obstacle problem, J. Differential...
    • I. Athanasopoulos, L. Caffarelli, and E. Milakis, Parabolic obstacle problems, quasi-convexity and regularity, Ann. Sc. Norm. Super. Pisa...
    • I. Athanasopoulos, L. A. Caffarelli, and S. Salsa, The structure of the free boundary for lower dimensional obstacle problems, Amer. J. Math....
    • B. Barrios, A. Figalli, and X. Ros-Oton, Global regularity for the free boundary in the obstacle problem for the fractional Laplacian, Amer....
    • B. Barrios, A. Figalli, and X. Ros-Oton, Free boundary regularity in the parabolic fractional obstacle problem, Comm. Pure Appl. Math. 71(10)...
    • H. Beirao da Veiga ˜ , Sulla h¨olderianit`a delle soluzioni di alcune disequazioni variazionali con condizioni unilatere al bordo, Ann....
    • H. Beirao da Veiga and F. Conti ˜ , Equazioni ellittiche non lineari con ostacoli sottili. Applicazioni allo studio dei punti regolari, Ann....
    • J.-P. Bouchaud and A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep....
    • L. A. Caffarelli, The regularity of free boundaries in higher dimensions, Acta Math. 139(3–4) (1977), 155–184. DOI: 10.1007/BF02392236.
    • L. A. Caffarelli, Further regularity for the Signorini problem, Comm. Partial Differential Equations 4(9) (1979), 1067–1075. DOI: 10.1080/036053079088201...
    • L. A. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl. 4(4– 5) (1998), 383–402. DOI: 10.1007/BF02498216.
    • L. Caffarelli and A. Figalli, Regularity of solutions to the parabolic fractional obstacle problem, J. Reine Angew. Math. 680 (2013), 191–233....
    • L. A. Caffarelli and N. M. Riviere ` , Asymptotic behaviour of free boundaries at their singular points, Ann. of Math. (2) 106(2) (1977),...
    • L. Caffarelli, X. Ros-Oton, and J. Serra, Obstacle problems for integrodifferential operators: regularity of solutions and free boundaries,...
    • L. A. Caffarelli, S. Salsa, and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the...
    • L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32(7–9) (2007),...
    • L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2)...
    • A. Carbotti, S. Dipierro, and E. Valdinoci, “Local Density of Solutions to Fractional Equations”, De Gruyer Studies in Mathematics 74, De...
    • J. A. Carrillo, M. G. Delgadino, and A. Mellet, Regularity of local minimizers of the interaction energy via obstacle problems, Comm. Math....
    • M. Colombo, L. Spolaor, and B. Velichkov, Direct epiperimetric inequalities for the thin obstacle problem and applications, Comm. Pure Appl....
    • R. Cont and P. Tankov, “Financial Modelling with Jump Processes”, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC,...
    • D. Danielli, N. Garofalo, A. Petrosyan, and T. To, Optimal regularity and the free boundary in the parabolic Signorini problem, Mem. Amer....
    • D. Danielli and S. Salsa, Obstacle problems involving the fractional Laplacian, in: “Recent Developments in Nonlocal Theory”, De Gruyter,...
    • M. de Acutis, Regolarit`a di frontiere minimali con ostacoli sottili, Rend. Sem. Mat. Univ. Padova 61 (1979), 133–144.
    • E. De Giorgi, Problemi di superfici minime con ostacoli: forma non cartesiana, Boll. Un. Mat. Ital. (4) 8 (1973), suppl. no. 2, 80–88.
    • D. De Silva and O. Savin, Boundary Harnack estimates in slit domains and applications to thin free boundary problems, Rev. Mat. Iberoam. 32(3)...
    • D. De Silva and O. Savin, A short proof of boundary Harnack principle, J. Differential Equations 269(3) (2020), 2419–2429. DOI: 10.1016/j.jde.2020.02....
    • G. Duvaut and J. L. Lions, “Inequalities in Mechanics and Physics”, Translated from the French by C. W. John, Grundlehren der Mathematischen...
    • L. C. Evans, “An Introduction to Stochastic Differential Equations”, American Mathematical Society, Providence, RI, 2013. DOI: 10.1090/mbk/082.
    • X. Fernandez-Real ´ , C1,α estimates for the fully nonlinear Signorini problem, Calc. Var. Partial Differential Equations 55(4) (2016), Art....
    • X. Fernandez-Real and Y. Jhaveri ´ , On the singular set in the thin obstacle problem: higher-order blow-ups and the very thin obstacle problem,...
    • X. Fernandez-Real and X. Ros-Oton ´ , The obstacle problem for the fractional Laplacian with critical drift, Math. Ann. 371(3–4) (2018), 1683–1735....
    • X. Fernandez-Real and X. Ros-Oton ´ , “Regularity Theory for Elliptic PDE”, Submitted (2020) (available at the webpage of the authors).
    • X. Fernandez-Real and X. Ros-Oton ´ , Free boundary regularity for almost every solution to the Signorini problem, Arch. Ration. Mech. Anal....
    • X. Fernandez-Real and J. Serra ´ , Regularity of minimal surfaces with lowerdimensional obstacles, J. Reine Angew. Math. 767 (2020), 37–75....
    • G. Fichera, Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz....
    • A. Figalli and J. Serra, On the fine structure of the free boundary for the classical obstacle problem, Invent. Math. 215(1) (2019), 311–366....
    • A. Figalli, X. Ros-Oton, and J. Serra, Generic regularity of free boundaries for the obstacle problem, Publ. Math. Inst. Hautes Etudes Sci....
    • M. Focardi and E. Spadaro, An epiperimetric inequality for the thin obstacle problem, Adv. Differential Equations 21(1–2) (2016), 153–200.
    • M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower dimensional obstacle problem, Arch. Ration....
    • M. Focardi and E. Spadaro, The local structure of the free boundary in the fractional obstacle problem, Preprint (2019). arXiv:1903.05909.
    • M. Focardi and E. Spadaro, How a minimal surface leaves a thin obstacle, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire 37(4) (2020), 1017–1046....
    • J. Frehse, On Signorini’s problem and variational problems with thin obstacles, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4(2) (1977), 343–362.
    • N. Garofalo and A. Petrosyan, Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. Math....
    • N. Garofalo, A. Petrosyan, C. A. Pop, and M. Smit Vega Garcia, Regularity of the free boundary for the obstacle problem for the fractional...
    • N. Garofalo, A. Petrosyan, and M. Smit Vega Garcia, An epiperimetric inequality approach to the regularity of the free boundary in the Signorini...
    • M. Giaquinta and G. Modica, Regolarit`a Lipschitziana per la soluzione di alcuni problemi di minimo con vincolo, Ann. Mat. Pura Appl....
    • G. Grubb, Fractional Laplacians on domains, a development of H¨ormander’s theory of µ-transmission pseudodifferential operators, Adv. Math....
    • N. Kikuchi and J. T. Oden, “Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods”, SIAM Studies...
    • D. Kinderlehrer, Variational inequalities with lower dimensional obstacles, Israel J. Math. 10 (1971), 339–348. DOI: 10.1007/BF02771651.
    • D. Kinderlehrer, Remarks about Signorini’s problem in linear elasticity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8(4) (1981), 605–645.
    • D. Kinderlehrer and L. Nirenberg, Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4(2) (1977), 373–391.
    • H. Koch, A. Petrosyan, and W. Shi, Higher regularity of the free boundary in the elliptic Signorini problem, Nonlinear Anal. 126 (2015), 3–44....
    • B. Krummel and N. Wickramasekera, Fine properties of branch point singularities: Two-valued harmonic functions, Preprint (2013). arXiv:1311.0923.
    • P. Laurence and S. Salsa, Regularity of the free boundary of an American option on several assets, Comm. Pure Appl. Math. 62(7) (2009), 969–994....
    • H. Lewy, On a variational problem with inequalities on the boundary, J. Math. Mech. 17(9) (1968), 861–884.
    • H. Lewy and G. Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math. 22(2) (1969), 153–188. DOI:...
    • J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20(3) (1967), 493–519. DOI: 10.1002/cpa.3160200302.
    • P. Mattila, “Geometry of Sets and Measures in Euclidean Spaces. Fractals and rectifiability”, Cambridge Studies in Advanced Mathematics 44,...
    • R. C. Merton, Option pricing when underlying stock returns are discontinuous, J. Financ. Econ. 3(1–2) (1976), 125–144. DOI: 10.1016/0304-405X(76)90022-2.
    • R. Monneau, Pointwise estimates for Laplace equation. Applications to the free boundary of the obstacle problem with Dini coefficients, J....
    • A. Naber and D. Valtorta, Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic maps, Ann. of Math. (2) 185(1) (2017),...
    • A. Naber and D. Valtorta, The singular structure and regularity of stationary varifolds, J. Eur. Math. Soc. (JEMS) 22(10) (2020), 3305–3382....
    • A. Petrosyan and C. A. Pop, Optimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift, J. Funct. Anal....
    • A. Petrosyan, H. Shahgholian, and N. Uraltseva, “Regularity of Free Boundaries in Obstacle-Type Problems”, Graduate Studies in Mathematics...
    • H. Pham, Optimal stopping, free boundary, and American option in a jumpdiffusion model, Appl. Math. Optim. 35(2) (1997), 145–164. DOI: 10.1007/...
    • D. J. A. Richardson, Variational problems with thin obstacles, Thesis (Ph.D.)- The University of British Columbia, Canada (1978). Available...
    • X. Ros-Oton, Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat. 60(1) (2016), 3–26. DOI: 10.5565/PUBLMAT_60116_01.
    • X. Ros-Oton, Obstacle problems and free boundaries: an overview, SeMA J. 75(3) (2018), 399–419. DOI: 10.1007/s40324-017-0140-2.
    • X. Ros-Oton and J. Serra, The structure of the free boundary in the fully nonlinear thin obstacle problem, Adv. Math. 316 (2017), 710–747....
    • A. Ruland and W. Shi ¨ , Optimal regularity for the thin obstacle problem with C0,α coefficients, Calc. Var. Partial Differential Equations...
    • S. Salsa, The problems of the obstacle in lower dimension and for the fractional Laplacian, in: “Regularity Estimates for Nonlinear Elliptic...
    • W. Shi, An epiperimetric inequality approach to the parabolic Signorini problem, Discrete Contin. Dyn. Syst. 40(3) (2020), 1813–1846. DOI:...
    • A. Signorini, Sopra alcune questioni di elastostatica, Atti Soc. It. Progr. Sc. 21II (1933), 143–148.
    • A. Signorini, Questioni di elasticit`a non linearizzata e semilinearizzata, Rend. Mat. e Appl. (5) 18 (1959), 95–139.
    • L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60(1) (2007), 67–112....
    • G. S. Weiss, A homogeneity improvement approach to the obstacle problem, Invent. Math. 138(1) (1999), 23–50. DOI: 10.1007/s002220050340.
    • B. White, Stratification of minimal surfaces, mean curvature flows, and harmonic maps, J. Reine Angew. Math. 488 (1997), 1–35. DOI: 10.1515/crll.1997....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno