Ir al contenido

Documat


Parabolic Systems Involving Sectorial Operators: Existence and Uniqueness of Global Solutions.

  • Yangari, Miguel [1] ; Salazar, Diego [1]
    1. [1] Escuela Politécnica Nacional

      Escuela Politécnica Nacional

      Quito, Ecuador

  • Localización: Revista Politécnica, ISSN-e 2477-8990, Vol. 38, Nº. 1, 2016 (Ejemplar dedicado a: Revista Politécnica), págs. 40-40
  • Idioma: inglés
  • Enlaces
  • Resumen
    • español

      Resumen: El objetivo de este artículo es estudiar la existencia y unicidad de soluciones globales en tiempo para sistemas deecuaciones, cuando los términos de difusión están dados por operadores sectoriales

    • English

      Abstract: The aim of this paper is to study the existence and uniqueness of global solutions in time to systems ofequations, whenthe diffusion terms are given by sectorial generators.

  • Referencias bibliográficas
    • Aizicovici S., and Mckibben M. (2000). Existence results for a class of
    • abstract nonlocal Cauchy problems. Nonlinear Analysis. 39, 649-668.
    • Benchohra, M and Ntouyas, S. (2001). Nonlocal Cauchy problems for neutral functional differential and integrodif- ferential inclusions in...
    • Byszewski L. and Lakshmikantham V. (1990). Theorem about the existence and uniqueness of a solutions of a non- local Cauchuy problem in a...
    • Byszewski, L. (1991). Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math....
    • Byszewski, L. (1993). Existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problem. Zesz. Nauk. Pol. Rzes. Mat. Fiz....
    • Byszewski, L. and Akca, H. (1998). Existence of solutions of a semilinear functional-differential evolution non-local problem. Nonlinear Analysis....
    • Cabré, X. and Roquejoffre, J. (2013). The influence of fractional diffusion in Fisher-KPP equation. Commun. Math. Phys. 320, 679-722.
    • Fu, X. and Ezzinbi, K. (2003). Existence of solutions for
    • neutral functional differential evolution equations with non- local
    • conditions. Nonlinear Analysis. 54, 215-227.
    • Henry, D. (1981). Geometric theory of semilinear parabolic
    • equations. Berlin, Germany: Springer-Verlag.
    • Jackson, D. (1993). Existence and uniqueness of solutions to semilinear nonlocal parabolic equations.J.Math. Anal. Appl. 172, 256-265.
    • Liang, J., Van Casteren, J., and Xiao, T. (2002). Nonlocal Cauchy problems for semilinear evolution equations. Nonli- near Anal.
    • Ser. A: Theory Methods. 50, 173-189.
    • Lin,Y. and Liu, J. (1996). Semilinear integrodifferential equations
    • with nonlocal Cauchy Problems. Nonlinear Analysis. 26, 1023-1033.
    • Ntouyas, S. and Tsamotas, P. (1997). Global existence for semilinear evolution equations with nonlocal conditions. J. Math. Anal.
    • Ntouyas, S and Tsamotas, P. (1997). Global existence for semilinear integrodifferential equations with delay and non- local conditions. J....
    • Yangari, M. (2015). Existence and Uniqueness of Global Mild Solutions for Nonlocal Cauchy Systems in Banach Spaces. Revista Politécnica. 35(2),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno