Salomé Gabriela Galeas Hurtado, Jonathan Castro Revelo, Cristina Fajardo, Víctor Hugo Guerrero Barragán
Resumen: En este trabajo se estudia el efecto de la inclusión de nanoarcillas montmorilloníticas en una matriz de polipropileno (PP) sobre sus propiedades mecánicas y termomecánicas. Para la obtención de este compuesto se empleó como refuerzo arcilla en polvo y en masterbatch, en porcentajes de 3, 5, 7 wt%, y como compatibilizante polipropileno maleizado (PP g MA) en proporciones compatibilizante: nanoarcillas de 1:2, 1:1 y 2:1. La inclusión de arcillas y compatibilizante en la matriz de PP se realizó con una extrusora de doble tornillo y se empleó una inyectora para la obtención de probetas para ensayos de tracción, flexión e impacto según las normas ASTM D638-10, D7264-07 y D256-10, respectivamente. La estabilidad térmica del material fue determinada por análisis termogravimétrico (TGA). Los compuestos con el 5 wt% de nanoarcillas en polvo exhibieron mejor comportamiento mecánico respecto a la matriz pura; con incrementos del 4, 40, 59, 57% en la resistencia a la tracción y flexión, módulo elástico y de flexión respectivamente, con una reducción del 50% en la resistencia al impacto. La estabilidad térmica y la resistencia a la flama de los nanocompuestos obtenidos aumentaron proporcionalmente al porcentaje de refuerzo. Además, se estudió el uso del compuesto con mejor combinación de propiedades en un prototipo de bandeja porta batería para autos disponible en el mercado. El prototipo fue caracterizado y optimizado mediante simulaciones basadas en análisis de elemento finito. Se plantearon diseños similares con reducciones en peso del 14 y 33% en relación al modelo original, para una reducción de espesores y una optimización geométrica, respectivamente.Â
Abstract: In this work, the effect of adding montmorillonite nanoclays as reinforcement to a polypropylene (PP) matrix is studied. The reinforcing clay was used as powder and masterbatch, with loads of 3, 5, 7 wt%. Maleic anhydride grafted polypropylene (PP g MA) was also added as compatibilizer, in 1:2; 1:1 and 2:1 ratios of PP-g-MA: clay. The clays and the compatibilizer were added to the PP matrix using a twin screw extruder. The obtained nanocomposite pellets were injected to obtain tensile, bending and impact test specimens according to standards ASTM D638-10, D7264-07 and D256-10, respectively. Thermal stability of the materials was analyzed using thermogravimetric analysis (TGA). The 5 wt% nanocomposites showed the best mechanical properties compared to the original matrix; with improvements of 4% in tensile strength and 59% in elastic modulus. Enhancements of 40% in the bending strength and 57% in bending modulus were also observed. Nonetheless, a reduction in the impact strength of nearly 50% was observed. Thermal stability and flame resistance of the nanocomposites increased proportionally to the clay fraction. The characterization of a commercially available automotive battery tray was also performed. A prototype was manufactured with the composite with the best mechanical properties was optimized by simulation using finite element analysis. Similar designs with 14 and 33% weight reductions compared to the original model were proposed, based on thickness reduction and geometrical optimization.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados