Ir al contenido

Documat


Estimation of cut-off points under complex-sampling design data

  • Amaia Iparragirre [1] ; Irantzu Barrio [1] Árbol académico ; Jorge Aramendi [2] ; Inmaculada Arostegui [1] Árbol académico
    1. [1] Universidad del País Vasco/Euskal Herriko Unibertsitatea

      Universidad del País Vasco/Euskal Herriko Unibertsitatea

      Leioa, España

    2. [2] Instituto Vasco de Estadística
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 46, Nº. 1, 2022, págs. 137-158
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In the context of logistic regression models, a cut-off point is usually selected to dichotomize the estimated predicted probabilities based on the model. The techniques proposed to estimate optimal cut-off points in the literature, are commonly developed to be applied in simple random samples and their applicability to complex sampling designs could be limited. Therefore, in this work we propose a methodology to incorporate sampling weights in the estimation process of the optimal cut-off points, and we evaluate its performance using a real data-based simulation study. The results suggest the convenience of considering sampling weights for estimating optimal cut-off points.

  • Referencias bibliográficas
    • Baker, T. and Gerdin, M. (2017). The clinical usefulness of prognostic prediction models in critical illness. European Journal of Internal...
    • Bamber, D. (1975). The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. Journal of Mathematical...
    • Binder, D. A. (1981). On the variances of asymptotically normal estimators from complex surveys. Survey Methodology, 7(2):157–170.
    • Binder, D. A. (1983). On the variances of asymptotically normal estimators from complex surveys. International Statistical Review, 51(3):279–292.
    • Binder, D. A. and Roberts, G. (2009). Designand model-based inference for model parameters. Handbook of Statistics, 29:33–54.
    • Chen, J.-Y., Feng, J., Wang, X.-Q., Cai, S.-W., Dong, J.-H., and Chen, Y.-L. (2015). Risk scoring system and predictor for clinically relevant...
    • Cohen, J. (1960). A coeffcient of agreement for nominal scales. Educational and Psychological Measurement, 20(1):37–46.
    • Filella, X., Alcover, J., Molina, R., Giménez, N., Rodrı́guez, A., Jo, J., Carretero, P., and Ballesta, A. M. (1995). Clinical usefulness...
    • Greiner, M. (1995). Two-graph receiver operating characteristic (TG-ROC): a MicrosoftEXCEL template for the selection of cut-off values in...
    • Greiner, M. (1996). Two-graph receiver operating characteristic (TG-ROC): update version supports optimisation of cut-off values that minimise...
    • Greiner, M., Pfeiffer, D., and Smith, R. (2000). Principles and practical application of the receiver-operating characteristic analysis for...
    • Hanley, J. A. and Mcneil, B. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143:29–36.
    • Heeringa, S. G., West, B. T., and Berglund, P. A. (2017). Applied Survey Data Analysis (2nd ed.). Chapman and Hall/CRC.
    • Hosmer, D. W. and Lemeshow, S. (2000). Applied Logistic Regression. Wiley New York.
    • Kalton, G. (1983). Introduction to Survey Sampling. Thousand Oaks, CA: Sage. Lewis, J. D., Chuai, S., Nessel, L., Lichtenstein, G. R., Aberra,...
    • J. H. (2008). Use of the noninvasive components of the Mayo score to assess clinical response in ulcerative colitis. Infammatory Bowel Diseases,...
    • López-Ratón, M., Rodrı́guez-Álvarez, M. X., Cadarso-Suárez, C., Gude-Sampedro, F., et al. (2014). OptimalCutpoints: an R package...
    • Lumley, T. and Scott, A. (2015). AIC and BIC for modeling with complex survey data. Journal of Survey Statistics and Methodology, 3(1):1–18.
    • Magder, L. S. and Fix, A. D. (2003). Optimal choice of a cut point for a quantitative diagnostic test performed for research purposes. Journal...
    • Manel, S., Williams, H. C., and Ormerod, S. J. (2001). Evaluating presence–absence models in ecology: the need to account for prevalence....
    • Metz, C. E. (1978). Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8(4):283–298.
    • Pauker, S. G. and Kassirer, J. P. (1980). The threshold approach to clinical decision making. New England Journal of Medicine, 302(20):1109–1117.
    • Pepe, M. S. (2003). The Statistical Evaluation of Medical Tests for Classifcation and Prediction. Oxford University Press, New York.
    • Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., and Müller, M. (2011). pROC: an open-source package for R and...
    • Rutter, C. M. and Miglioretti, D. L. (2003). Estimating the accuracy of psychological scales using longitudinal data. Biostatistics, 4(1):97–107.
    • Skinner, C. J., Holt, D., and Smith, T. F. (1989). Analysis of Complex Surveys. John Wiley & Sons.
    • Spence, R. T., Chang, D. C., Kaafarani, H. M., Panieri, E., Anderson, G. A., and Hutter, M. M. (2018). Derivation, validation and application...
    • Steyerberg, E. W. (2008). Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. Springer Science &...
    • Steyerberg, E. W., Marshall, P. B., Jan Keizer, H., and Habbema, J. D. F. (1999). Resection of small, residual retroperitoneal masses after...
    • Swets, J. A. (1992). The science of choosing the right decision threshold in high-stakes diagnostics. American Psychologist, 47(4):522–532.
    • Vermont, J., Bosson, J., Francois, P., Robert, C., Rueff, A., and Demongeot, J. (1991). Strategies for graphical threshold determination....
    • Wynants, L., van Smeden, M., McLernon, D. J., Timmerman, D., Steyerberg, E. W., Van Calster, B., et al. (2019). Three myths about risk thresholds...
    • Yao, W., Li, Z., and Graubard, B. I. (2015). Estimation of ROC curve with complex survey data. Statistics in Medicine, 34(8):1293–1303.
    • Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1):32–35.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno