Ir al contenido

Documat


Topological Data Analysis and its usefulness for precision medicine studies

  • Raquel Iniesta [1] ; Ewan Carr [1] ; Mathieu Carrière [4] ; Naya Yerolemou [2] ; Bertrand Michel [3] ; Frédéric Chazal [5]
    1. [1] King's College London

      King's College London

      Reino Unido

    2. [2] University of Oxford

      University of Oxford

      Oxford District, Reino Unido

    3. [3] Ecole Centrale de Nantes

      Ecole Centrale de Nantes

      Arrondissement de Nantes, Francia

    4. [4] Inria Sophia-Antipolis, DataShape Team, Biot, Francia
    5. [5] Inria Saclay - Ile-de-France, Francia
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 46, Nº. 1, 2022, págs. 115-136
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Precision medicine allows the extraction of information from complex datasets to facilitate clinical decision-making at the individual level. Topological Data Analysis (TDA) offers promising tools that complement current analytical methods in precision medicine studies. We introduce the fundamental concepts of the TDA corpus (the simplicial complex, the Mapper graph, the persistence diagram and persistence landscape). We show how these can be used to enhance the prediction of clinical outcomes and to identify novel subpopulations of interest, particularly applied to understand remission of depression in data from the GENDEP clinical trial.

  • Referencias bibliográficas
    • Adamson, A. S. and Welch, H. G. (2019). Machine Learning and the Cancer-Diagnosis Problem — No Gold Standard. New England Journal of Medicine,...
    • Bauer, U., Kerber, M., Reininghaus, J., and Wagner, H. (2017). Phat – Persistent Homology Algorithms Toolbox. Journal of Symbolic Computation,...
    • Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., and Erbaugh, J. (1961). An Inventory for Measuring Depression. Archives of General Psychiatry,...
    • Belchı́, F., Brodzki, J., Burftt, M., and Niranjan, M. (2019). A numerical measure of the instability of mapper-type algorithms. Journal...
    • Bubenik, P. (2015). Statistical Topological Data Analysis using Persistence Landscapes. page 26.
    • Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society, 46(2):255–308.
    • Carr, E., Carrière, M., Michel, B., Chazal, F., and Iniesta, R. (2021). Identifying homogeneous subgroups of patients and important features:...
    • Carrière, M. (2019). MathieuCarriere/Sklearn-Tda.
    • Carrière, M. (2020). MathieuCarriere/Statmapper.
    • Carrière, M., Michel, B., and Oudot, S. (2018). Statistical Analysis and Parameter Selection for Mapper. Journal of Machine Learning Research,...
    • Carrière, M. and Oudot, S. (2017). Local Equivalence and Induced Metrics for Reeb Graphs. In Proceedings of the 33rd Symposium on Computational...
    • Carrière, M. and Oudot, S. (2018). Structure and Stability of the 1-Dimensional Mapper. Foundations of Computational Mathematics, 18(6):1333–1396.
    • Chartrand, G. (1985). Introductory Graph Theory. Dover Publications Inc., New York, abridged edition edition edition.
    • Chazal, F. (2016). High-Dimensional Topological Data Analysis. In 3rd Handbook of Discrete and Computational Geometry. CRC Press.
    • Chazal, F., Massart, P., and Michel, B. (2016). Rates of convergence for robust geometric inference. Electronic Journal of Statistics, 10(2):2243–2286.
    • Chazal, F. and Michel, B. (2021). An introduction to topological data analysis: Fundamental and practical aspects for data scientists. Frontiers...
    • Chazal, F. and Oudot, S. Y. (2008). Towards persistence-based reconstruction in eu- clidean spaces. In Proceedings of the Twenty-Fourth Annual...
    • Chekroud, A. M., Zotti, R. J., Shehzad, Z., Gueorguieva, R., Johnson, M. K., Trivedi, M. H., Cannon, T. D., Krystal, J. H., and Corlett, P....
    • Cohen-Steiner, D., Edelsbrunner, H., and Harer, J. (2007). Stability of Persistence Diagrams. Discrete & Computational Geometry, 37(1):103–120.
    • Dagliati, A., Geifman, N., Peek, N., Holmes, J. H., Sacchi, L., Bellazzi, R., Sajjadi, S. E., and Tucker, A. (2020). Using topological data...
    • Devillers, O., Hornus, S., and Jamin, C. (2022). dD triangulations. In CGAL User and Reference Manual. CGAL Editorial Board, 5.4 edition.
    • Edelsbrunner, H., Letscher, D., and Zomorodian, A. (2000). Topological persistence and simplifcation. In Proceedings 41st Annual Symposium...
    • Ekins, S., Puhl, A. C., Zorn, K. M., Lane, T. R., Russo, D. P., Klein, J. J., Hickey, A. J., and Clark, A. M. (2019). Exploiting machine learning...
    • Fasy, B. T., Kim, J., Lecci, F., and Maria, C. (2014). Introduction to the R package TDA. arXiv:1411.1830 [cs, stat].
    • Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of...
    • Ghrist, R. (2018). Homological algebra and data. In Mahoney, M., Duchi, J., and Gilbert, A., editors, IAS/Park City Mathematics Series, volume...
    • Hamilton, M. (1967). Development of a Rating Scale for Primary Depressive Illness. British Journal of Social and Clinical Psychology, 6(4):278–296.
    • Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference and Prediction. Number 1...
    • Hatcher, A. (2002). Algebraic Topology. Cambridge University Press.
    • Henle, M. (1994). A Combinatorial Introduction to Topology. Dover Books, Inc, New York.
    • Ho, D. S. W., Schierding, W., Wake, M., Saffery, R., and O’Sullivan, J. (2019). Machine Learning SNP Based Prediction for Precision Medicine....
    • Iniesta, R., Hodgson, K., Stahl, D., Malki, K., Maier, W., Rietschel, M., Mors, O., Hauser, J., Henigsberg, N., Dernovsek, M. Z., Souery,...
    • Iniesta, R., Malki, K., Maier, W., Rietschel, M., Mors, O., Hauser, J., Henigsberg, N., Dernovsek, M. Z., Souery, D., Stahl, D., Dobson, R.,...
    • Iniesta, R., Stahl, D., and McGuffn, P. (2017). Machine learning, statistical learning and the future of biological research in psychiatry....
    • Ioannidis, J., Klavans, R., and Boyack, K. (2016). Multiple citation indicators and their composite across scientifc disciplines. PLoS Biol,...
    • Khan, W., Crockett, K., O’Shea, J., Hussain, A., and Khan, B. M. (2021). Deception in the eyes of deceiver: A computer vision and machine...
    • Khan, W., Hussain, A., Ahmed Khan, S., Al-Jumailey, M., Raheel, N., and Liatsis, P. (2019). Analysing the impact of global demographic characteristics...
    • Kosniowski, C. (1980). A First Course in Algebraic Topology. CUP Archive.
    • Kuhn, M. (2008). Building predictive models in r using the caret package. Journal of Statistical Software, Articles, 28(5):1–26.
    • Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Series in Computer Science.
    • McGraw-Hill, New York. Mitchell, T. M. (2006). The Discipline of Machine Learning. page 9.
    • Montgomery, S. A. and ˚ A new depression scale designed to beAsberg, M. (1979). sensitive to change. British Journal of Psychiatry, 134:382–389.
    • Morozov, D. (2007). Dionysus, a C++ library for computing persistent homology.
    • Müllner, D. and Babu, A. (2013). Python Mapper: An open-source toolchain for data exploration.
    • Munch, E. (2017). A User’s Guide to Topological Data Analysis. Journal of Learning Analytics, 4(2):47–61.
    • Nature (2019). Ascent of machine learning in medicine. Nature Materials, 18(5):407– 407.
    • Nicolau, M., Levine, A. J., and Carlsson, G. (2011). Topology based data analysis identifes a subgroup of breast cancers with a unique mutational...
    • Nielson, J. L., Cooper, S. R., Yue, J. K., Sorani, M. D., Inoue, T., Yuh, E. L., Mukherjee, P., Petrossian, T. C., Paquette, J., Lum, P. Y.,...
    • Nusrat, S., Harbig, T., and Gehlenborg, N. (2019). Tasks, Techniques, and Tools for Genomic Data Visualization. Computer Graphics Forum, 38(3):781–805.
    • Otter, N., Porter, M. A., Tillmann, U., Grindrod, P., and Harrington, H. A. (2017). A roadmap for the computation of persistent homology....
    • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas,...
    • Perroud, N., Uher, R., Ng, M. Y. M., Guipponi, M., Hauser, J., Henigsberg, N., Maier, W., Mors, O., Gennarelli, M., Rietschel, M., Souery,...
    • Qu, Z., Lau, C. W., Nguyen, Q. V., Zhou, Y., and Catchpoole, D. R. (2019). Visual Analytics of Genomic and Cancer Data: A Systematic Review....
    • R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria.
    • Rajkomar, A., Dean, J., and Kohane, I. (2019). Machine Learning in Medicine. New England Journal of Medicine, 380(14):1347–1358.
    • Riemann, B. and Clifford, T. W. K. (1998). On the Hypotheses which lie at the Bases of Geometry. page 15.
    • Sies, A., Demyttenaere, K., and Mechelen, I. V. (2019). Studying treatment-effect heterogeneity in precision medicine through induced subgroups....
    • Singh, G., Mémoli, F., and Carlsson, G. (2007). Topological methods for the analysis of high dimensional data sets and 3d object recognition....
    • The GUDHI Project (2015). GUDHI User and Reference Manual. GUDHI Editorial Board.
    • The GUDHI Project (2020). GUDHI User and Reference Manual. GUDHI Editorial Board, 3.1.1 edition.
    • Traylor, M., Markus, H., and Lewis, C. M. (2015). Homogeneous case subgroups increase power in genetic association studies. European Journal...
    • Uher, R., Farmer, A., Maier, W., Rietschel, M., Hauser, J., Marusic, A., Mors, O., Elkin, A., Williamson, R. J., Schmael, C., Henigsberg,...
    • Uher, R., Muthén, B., Souery, D., Mors, O., Jaracz, J., Placentino, A., Petrovic, A., Zobel, A., Henigsberg, N., Rietschel, M., Aitchison,...
    • Uher, R., Perlis, R. H., Henigsberg, N., Zobel, A., Rietschel, M., Mors, O., Hauser, J., Dernovsek, M. Z., Souery, D., Bajs, M., Maier, W.,...
    • Uher, R., Perroud, N., Ng, M. Y., Hauser, J., Henigsberg, N., Maier, W., Mors, O., Placentino, A., Rietschel, M., Souery, D., Žagar, T.,...
    • van Rossum, G. (1995). Python reference manual. Wing, J. K., Babor, T., Brugha, T., Burke, J., Cooper, J. E., Giel, R., Jablenski, A.,
    • Regier, D., and Sartorius, N. (1990). SCAN: Schedules fonr Clinical Assessment in Neuropsychiatry. Archives of General Psychiatry, 47(6):589–593.
    • Zomorodian, A. (2010). Fast construction of the Vietoris-Rips complex. Computers & Graphics, 34(3):263–271.
    • Zomorodian, A. and Carlsson, G. (2005). Computing Persistent Homology. Discrete & Computational Geometry, 33(2):249–274.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno