Ir al contenido

Documat


On the module intersection graph of ideals of rings

  • Thangaraj Asir [1] ; Arun Kumar [2] ; Alveera Mehdi [2]
    1. [1] Madurai Kamaraj University

      Madurai Kamaraj University

      India

    2. [2] Aligarh Muslim University

      Aligarh Muslim University

      India

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 63, Nº. 1, 2022, págs. 93-107
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Let R be a commutative ring and M an R-module. The M-intersection graph of ideals of R is an undirected simple graph, denoted by GM(R), whose vertices are non-zero proper ideals of R and two distinct vertices are adjacent if and only if IM ∩ JM 6= 0. In this article, we focus on how certain graph theoretic parameters of GM(R) depend on the properties of both R and M. Specifically, we derive a necessary and sufficient condition for R and M such that the M-intersection graph GM(R) is either connected or complete.

      Also, we classify all R-modules according to the diameter value of GM(R).

      Further, we characterize rings R for which GM(R) is perfect or Hamiltonian or pancyclic or planar. Moreover, we show that the graph GM(R) is weakly perfect and cograph.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno