Ir al contenido

Documat


Almost Periodic Solutions for Two Non-instantaneous Impulsive Biological Models

  • Rui Ma [1] ; JinRong Wang [1] ; Mengmeng Li [1]
    1. [1] Guizhou University

      Guizhou University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 3, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper investigates two non-instantaneous impulsive biological models. First, a non-instantaneous impulsive hematopoiesis model with pureNon-instantaneous impulsive · Biological model · Almost periodic solution · Converges exponentially · Simulations delay and a noninstantaneous impulsive n-dimensional biological model with pure delay have been proposed. Next, the existence and uniqueness of almost periodic solutions for these two models are proved by us respectively. Then, we prove that all solutions converge exponentially to the positive almost periodic solution respectively. Finally, some simulations are given to show the effectiveness of the theoretical results.

  • Referencias bibliográficas
    • 1. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control system. Science 197, 287–289 (1977)
    • 2. Nicholson, A.J.: The balance of animal population. J. Anim. Ecol. 2, 132–178 (1933)
    • 3. Corduneanu, C.: Almost Periodic Functions. Chelsea Publishing Company, New York (1989)
    • 4. Zhou, H., Wang, W., Yang, L.: Stage-structured hematopoiesis model with delays in an almost periodic environment. Appl. Math. Lett. 120,...
    • 5. Feketa, P., Klinshov, V., Lücken, L.: A survey on the modeling of hybrid behaviors: how to account for impulsive jumps properly. Commun....
    • 6. Stamova, I., Stamov, G.: Applied Impulsive Mathematical Models, Springer International Publishing, (2016)
    • 7. Stamova, I.: Stability Analysis of Impulsive Functional Differential Equations, Walter de Gruyter, (2009)
    • 8. Li, M., Wang, J., O’Regan, D.: Positive almost periodic solution for a noninstantaneous impulsive Lasota-Wazewska model. Bull. Iran. Math....
    • 9. Hernández, E., O’Regan, D., Bená, M.A.: On a new class of abstract integral equations and applications. Appl. Math. Comput. 219, 2271–2277...
    • 10. Bai, L., Nieto, J.J., Uzal, J.M.: On a delayed epidemic model with non-instantaneous impulses. Commun. Pure Appl. Anal. 19, 1915–1930...
    • 11. Hernández, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641–1649 (2013)
    • 12. Pierri, M., O’Regan, D., Rolnik, V.: Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses....
    • 13. Wang, J., Feˇckan, M.: A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal. 46, 915–934 (2015)
    • 14. Wang, J.: Stability of noninstantaneous impulsive evolution equations. Appl. Math. Lett. 73, 157–162 (2017)
    • 15. Bai, L., Nieto, J.J.: Variational approach to differential equations with not instantaneous impulses. Appl. Math. Lett. 73, 44–48 (2017)
    • 16. Benchohra, M., Litimein, S., Nieto, J.J.: Semilinear fractional differential equations with infinite delay and non-instantaneous impulses,...
    • 17. Tian, Y., Zhang, M.: Variational method to differential equations with instantaneous and noninstantaneous impulses. Appl. Math. Lett....
    • 18. Liu, S., Debbouche, A., Wang, J.: ILC method for solving approximate controllability of fractional differential equations with noninstantaneous...
    • 19. Ding, H., Liu, Q., Nieto, J.J.: Existence of positive almost periodic solutions to a class of hematopoiesis model. Appl. Math. Model....
    • 20. Luo, D., Luo, Z.: Existence and Hyers-Ulam stability results for a class of fractional order delay differential equations with non-instantaneous...
    • 21. Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations, World Scientific, (1995)
    • 22. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno