Ir al contenido

Documat


Existence and Asymptotic Behaviour of Solutions for a Quasilinear Schrödinger-Poisson System in R

  • Chongqing Wei [1] ; Anran Li [1] ; Leiga Zhao [2]
    1. [1] Shanxi University

      Shanxi University

      China

    2. [2] Beijing Technology and Business University

      Beijing Technology and Business University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 3, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we study the existence and asymptotic behaviour of solutions for the following quasilinear Schrödinger-Poisson system in R3 −u + V(x)u + λφu = f (x, u), x ∈ R3, −φ − ε44φ = λu2, x ∈ R3, where λ and ε are positive parameters, 4 = div(|∇u| 2∇u), V is a continuous and coercive potential function with positive infimum, f is a Carathéodory function defined on R3 × R satisfying the classic Ambrosetti-Rabinowitz condition. First, a nontrivial solution is obtained for λ small enough and ε fixed by variational methods and truncation technique. Later, the asymptotic behaviour of these solutions is studied whenever ε and λ tend to zero respectively. We prove that they converge to a nontrivial solution of a classic Schrödinger-Poisson system and a class of Schrödinger equation associated respectively

  • Referencias bibliográficas
    • 1. Azzollini, A., d’ Avenia, P., Pomponio, A.: On the Schrödinger-Maxwell equations under the effect of a general nonlinear term. Ann. Inst....
    • 2. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlin. Anal. 11, 283–293 (1998)
    • 3. Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations. Rev. Math. Phys. 14, 409–420...
    • 4. Bartsch, T., Wang, Z.-Q., Willem, M.: The Dirichlet problem for superlinear elliptic equations. Stationary partial differential equations....
    • 5. Benmilh, K., Kavian, O.: Existence and asymptotic behaviour of standing waves for quasilinear Schrödinger-Poisson systems in R3. Ann. Inst....
    • 6. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger-Poisson systems. J. Differ. Equ. 248, 521–543 (2010)
    • 7. D’Aprile, T., Mugnai, D.: Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004)
    • 8. Ding, L., Li, L., Meng, Y.-J., Zhuang, C.-L.: Existence and asymptotic behaviour of ground state solution for quasi-linear Schrödinger-Poisson...
    • 9. Du, Y., Su, J., Wang, C.: On a quasilinear Schrödinger-Poisson system. J. Math. Anal. Appl. 505, 125446 (2022)
    • 10. Fortunato, D., Orsina, L., Pisani, L.: Born-Infeld type equations for the electrostatic fields. J. Math. Phys. 43, 5698–5706 (2002)
    • 11. Figueiredo, G.M., Siciliano, G.: Quasi-linear Schrödinger-Poisson system under an exponential critical nonlinearity: existence and asymptotic...
    • 12. Figueiredo, G.M., Siciliano, G.: Existence and asymptotic behaviour of solutions for a quasi-linear Schrödinger-Poisson system with a...
    • 13. Illner, R., Lange, H., Toomire, B., Zweifel, P.: On quasi-linear Schrödinger-Poisson systems. Math. Methods Appl. Sci. 20, 1223–1238 (1997)
    • 14. Illner, R., Kavian, O., Lange, H.: Stationary solutions of quasi-linear Schrödinger-Poisson system. J. Differ. Equ. 145, 1–16 (1998)
    • 15. Jeanjean, L., Le Coz, S.: An existence and stability result for standing waves of nonlinear Schrödinger equations. Adv. Differ. Equ. 11,...
    • 16. Li, F., Zhang, Q.: Existence of positive solutions to the Schrödinger-Poisson system without compactness conditions. J. Math. Anal. Appl....
    • 17. Li, B., Yang, H.: The modified quantum Wigner system in weighted L2-space. Bull. Aust. Math. Soc. 95, 73–83 (2017)
    • 18. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor equations. Springer, Vienna (1990)
    • 19. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)
    • 20. Zhao, L., Zhao, F.: Positive solutions for Schrödinger-Poisson equations with a critical exponent. Nonlinear Anal. 70, 2150–2164 (2009)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno