Ir al contenido

Documat


Perturbation Ideals and Fredholm Theory in Banach Algebras

  • Tshikhudo Lukoto [1] ; Heinrich Raubenheimer [2]
    1. [1] University of Limpopo

      University of Limpopo

      Polokwane, Sudáfrica

    2. [2] University of Johannesburg

      University of Johannesburg

      City of Johannesburg, Sudáfrica

  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 37, Nº 1, 2022, págs. 91-110
  • Idioma: inglés
  • DOI: 10.17398/2605-5686.37.1.91
  • Enlaces
  • Resumen
    • In this paper we characterize perturbation ideals of sets that generate the familiar spectrain Fredholm theory.

  • Referencias bibliográficas
    • [1] P. Aiena, “Fredholm and Local Spectral Theory, with Applications to Multipliers”, Kluwer Academic Publishers, Dordrecht, 2004.
    • [2] B. Aupetit, “A Primer on Spectral Theory”, Second edition, Springer-Verlag, New York, 1991.
    • [3] B.A. Barnes, G.J. Murphy, M.R.F. Smyth, T.T. West, “Riesz and Fredholm Theory in Banach Algebras”, Pitman, Boston-London-Melbourne, 1982.
    • [4] J.J. Grobler, H. Raubenheimer, The Index for Fredholm Elements in a Banach Algebra via Trace, Studia Mathematica 187 (3) (2008), 281 –...
    • [5] J.J. Grobler, H. Raubenheimer, A. Swartz, The Index for Fredholm Elements in a Banach Algebra via Trace II, Czechoslovac Mathematical...
    • [6] R. Harte, Fredholm Theory Relative to a Banach Algebra Homomorphism, Mathematische Zeitschrift 179 (1982), 431 – 436.
    • [7] R. Harte, “Invertibility and Singularity for Bounded Linear Operators”, Marcel Dekker, New York-Basel, 1988.
    • [8] J.J. Koliha, A Generalized Drazin Inverse, Glasgow Mathematical Journal 38 (3) (1996), 367 – 381.
    • [9] V. Kordula, V. Müller, On the Axiomatic Theory of Spectrum, Studia Mathematica 119 (1996), 109 – 128.
    • [10] A. Lebow, M. Schechter, Semigroups of Operators and Measures of Non-compactness, Journal of Functional Analysis 7 (1971), 1 – 26.
    • [11] L. Lindeboom, H. Raubenheimer, On Regularities and Fredholm Theory, Czechoslovak Mathematical Journal 52 (2002), 565 – 574.
    • [12] R.A. Lubansky, Koliha-Drazin Invertibles Form a Regularity, Proceedings of the Royal Irish Academy 107A (2) (2007), 137 – 141.
    • [13] H. du T. Mouton, H. Raubenheimer, More on Fredholm Theory Relative to a Banach Algebra Homomorphism, Proceedings of the Royal Irish Academy...
    • [14] H. du T. Mouton, S. Mouton, H. Raubenheimer, Ruston Elements and Fredholm Theory Relative to Arbitrary Homomorphisms, Quaestiones Mathematicae...
    • [15] V. Müller, Axiomatic Theory of Spectrum III - Semiregularities, Studia Mathematica 142(2) (2000), 159 – 169.
    • [16] V. Müller, “Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Operator Theory Advances and Applications”,...
    • [17] M.R.F. Smyth, Riesz Theory in Banach Algebras, Mathematische Zeitschrift 145 (1975), 145 – 155.
    • [18] W. Żelazko, Axiomatic approach to joint spectra I, Studia Mathematica 64 (1979), 249 – 261.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno