Ir al contenido

Documat


Degenerate Transcritical Bifurcation Point can be an Attractor: A Case Study in a Slow–Fast Modified Leslie–Gower Model

  • Liyan Zhong [1] ; Jianhe Shen [2]
    1. [1] Fujian Normal University

      Fujian Normal University

      China

    2. [2] FJKLMAA and Center for Applied Mathematics of Fujian Province (FJNU)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 3, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In general, bifurcation delay occurs near a transcritical bifurcation point of the critical curve in two-dimensional singular perturbation systems. However, if the transcritical bifurcation point is exactly an equilibrium of the model under certain parameter values, what happens near such “degenerate transcritical bifurcation point”? In this paper, by combining geometric singular perturbation theory, center manifold reduction and blow-up technique we show that a degenerate transcritical bifurcation point can be a global attractor via a concrete example—a slow-fast modified Leslie-Gower model.

      That is, bifurcation delay cannot occur near degenerate transcritical bifurcation point in this model. Numerical simulations verify the theoretical predictions.

  • Referencias bibliográficas
    • 1. Aziz-Alaoui, M.A., Daher Okiye, M.: Boundedness and global stability for a predator-prey model with modified Leslie–Gower and Holling-type...
    • 2. Ambrosio, B., Aziz-Alaoui, M.A., Yafia, R.: Canard phenomenon in a slow-fast modified Leslie–Gower model. Math. Biosci. 295, 48–54 (2018)
    • 3. Ai, S., Sadhu, S.: Entry-exit theorem and relaxation oscillations for fast-slow planar systems. J. Differ. Equ. 268(11), 7220–7249 (2020)
    • 4. Carr, J.: Applications of Center Manifold Theory. Springer Verlag, New York (1981)
    • 5. Chow, S.N., Hale, K.: Methods of Bifurcation Theory. Springer Verlag, New York (1982)
    • 6. Dumortir, F., Llibre, J., Artes, J.C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin (2006)
    • 7. Dumortier, F.: Techniques in the theory of local bifurcations: blow-up, normal forms, nilpotent bifurcations, singular perturbations. Bifurc....
    • 8. De Maesschalck, P., Schecter, S.: The entry-exit function and geometric singular perturbation theory. J. Differ. Equ. 260(8), 6697–6715...
    • 9. González-Olivares, E., Arancibia-Ibarra, C., Rojas-Palma, A., González-Ya ´nez, B.: Dynamics of a modified Leslie–Gower predation model...
    • 10. Hek, G.: Geometric singular perturbation theory in biological practice. J. Math. Biol. 60(3), 347–386 (2010)
    • 11. Hsu, T.H.: Number and stability of relaxation oscillations for predator-prey systems with small death rates. SIAM J. Appl. Dyn. Syst....
    • 12. Jones, C..K..R..T.: Geometric singular perturbation theory, in dynamical systems. In: Lecture Notes in Math 1609, 44–118 (1995)
    • 13. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic pointsfold and canard points in two dimensions....
    • 14. Krupa, M., Szmolyan, P.: Extending slow manifolds near transcritical and pitchfork singularities. Nonlinearity 14, 1473–1491 (2001)
    • 15. Li, Y.B., Zhang, F.B., Zhuo, X.A.: Flip bifurcation of a discrete predator-prey model with modified Leslie–Gower and Holling-type III...
    • 16. Li, M., Liu, W., Shan, C., Yi, Y.: Turning points and relaxation oscillation cycles in simple epidemic models. SIAM J. Appl. Math. 76(2),...
    • 17. Wang, C., Zhang, X.: Stability loss delay and smoothness of the return map in slow-fast systems. SIAM J. Appl. Dyn. Syst. 17(1), 788–822...
    • 18. Wang, C., Zhang, X.: Relaxation oscillations in a slow-fast modified Leslie–Gower model. Appl. Math. Lett. 87, 147–153 (2019)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno