Ir al contenido

Documat


On conjectures of Hovey–Strickland and Chai

  • Tobias Barthel [1] ; Drew Heard [2] ; Niko Naumann [3]
    1. [1] Max Planck Institute for Mathematics

      Max Planck Institute for Mathematics

      Kreisfreie Stadt Bonn, Alemania

    2. [2] Norwegian University of Science and Technology

      Norwegian University of Science and Technology

      Noruega

    3. [3] University of Regensburg

      University of Regensburg

      Kreisfreie Stadt Regensburg, Alemania

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 28, Nº. 3, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We prove the height two case of a conjecture of Hovey and Strickland that provides a K(n)-local analogue of the Hopkins–Smith thick subcategory theorem. Our approach first reduces the general conjecture to a problem in arithmetic geometry posed by Chai.

      We then use the Gross–Hopkins period map to verify Chai’s Hope at height two and all primes. Along the way, we show that the graded commutative ring of completed cooperations forMorava E-theory is coherent, and that every finitely generatedMorava module can be realized by a K(n)-local spectrum as long as 2p −2 > n2 +n. Finally, we deduce consequences of our results for descent of Balmer spectra.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno